Examining the Impact of Behavioral-Psychological Components of Investors’ Model for Decision-Making Based on Environmental Drivers in the Tehran Stock Exchange

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JIMOB-5-4_004

تاریخ نمایه سازی: 13 مرداد 1404

چکیده مقاله:

Objective: This study aims to develop and validate a behavioral-psychological model of investors' decision-making influenced by environmental drivers in the Tehran Stock Exchange.Methodology: The study employed a grounded theory approach using Strauss and Corbin's methodology, with data collected from semi-structured interviews conducted in ۲۰۲۱ and ۲۰۲۲. The participants comprised ۳۸۴ investment managers and experts from the Tehran Stock Exchange, selected through random-cluster sampling based on Morgan’s table. Data were collected using a ۵-point Likert scale questionnaire to assess perceptions and behavior patterns and were analyzed through structural equation modeling (SEM) using SmartPLS software.Findings: The results revealed that investors’ decisions are shaped by several dimensions, including causal factors (such as diagnostic ability and sentiment analysis), contextual factors (including positive and negative environmental drivers and regulatory requirements), intervening factors (such as behavioral outcomes, cultural characteristics, investor beliefs, and government economic policy), and strategic factors (like strategic financial planning). These dimensions collectively impact the central phenomenon of behavioral-psychological decision-making. The model’s outcomes were also validated, showing enhancements in investors’ perceptual levels, strengthened long-term perspectives, and expanded investment goals. The model's reliability and validity were confirmed using Cronbach's alpha, composite reliability, and AVE measures, with all indicators falling within acceptable ranges.Conclusion: Recognizing these drivers and investor biases allows for a more comprehensive understanding of market dynamics, suggesting that investment firms and policymakers should consider these behavioral patterns in strategic planning. Objective: This study aims to develop and validate a behavioral-psychological model of investors' decision-making influenced by environmental drivers in the Tehran Stock Exchange. Methodology: The study employed a grounded theory approach using Strauss and Corbin's methodology, with data collected from semi-structured interviews conducted in ۲۰۲۱ and ۲۰۲۲. The participants comprised ۳۸۴ investment managers and experts from the Tehran Stock Exchange, selected through random-cluster sampling based on Morgan’s table. Data were collected using a ۵-point Likert scale questionnaire to assess perceptions and behavior patterns and were analyzed through structural equation modeling (SEM) using SmartPLS software. Findings: The results revealed that investors’ decisions are shaped by several dimensions, including causal factors (such as diagnostic ability and sentiment analysis), contextual factors (including positive and negative environmental drivers and regulatory requirements), intervening factors (such as behavioral outcomes, cultural characteristics, investor beliefs, and government economic policy), and strategic factors (like strategic financial planning). These dimensions collectively impact the central phenomenon of behavioral-psychological decision-making. The model’s outcomes were also validated, showing enhancements in investors’ perceptual levels, strengthened long-term perspectives, and expanded investment goals. The model's reliability and validity were confirmed using Cronbach's alpha, composite reliability, and AVE measures, with all indicators falling within acceptable ranges. Conclusion: Recognizing these drivers and investor biases allows for a more comprehensive understanding of market dynamics, suggesting that investment firms and policymakers should consider these behavioral patterns in strategic planning.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbasi Mosleu, K. S., & Tehrani, N. (2019). Investigating the ...
  • Abdolrahimian, M. H., Torabi, T., Sadeghi Sharif, S. J., & ...
  • Alabass, H. S. H. H. (2019). The Impact of Corporate ...
  • Aref Manesh, Z., Rameshe, M., & Shokoohi, H. (2022). The ...
  • Asiabi, L., Rahimzadeh, A., Felihi, N., & Rajai, Y. (2021). ...
  • Bakar, S., & Chui Yi, A. (2016). The Impact of ...
  • Barabari, M. R., & Akbari. (2019). Investigating influential variables in ...
  • Barzegari Khanqah, J., Hejazi, R., & Reza Zadeh, F. (2017). ...
  • Bashiri Manesh, N., & Shahnazi, H. (2022). The impact of ...
  • Chavoshi, S. K., & Foulatoon Nejad, F. (2017). Presenting an ...
  • Dadar, O., & Jafari, S. M. (2020). Examining the impact ...
  • Daneshi, Y., & Esmailzadeh, A. (2022). The impact of enterprise ...
  • Ebrahimi Lifshagar, A., Pakizeh, K., & Reisi Far, K. (2019). ...
  • Farhadi Sharif Abad, M., & Doaei, M. (2012). Modeling investor ...
  • Jabari Khoozani, A., Salehi, E. K., Kaab Omeir, A., & ...
  • Jering, L., Martinez, N. C. A., & da Costa, N. ...
  • Mahboobi, H., Damankeshideh, M., Momeni Vasalian, H., & Nasabian, S. ...
  • Mirbozorgi, S. P., Hemmat Far, M., & Jenani, M. H. ...
  • Mirlohi, S. M., & Mohammadi Tudeshki, N. (2020). Forming an ...
  • Momeni, A., & Rezaei Ghal'e, Z. (2018). The impact of ...
  • Petit, J. J. G., Lafuente, E. V., & Vieites, A. ...
  • Raki, M., Mehrara, M., Abbasi Nejad, H., & Soori, A. ...
  • Ronen, T., & Lewinstein Yaari, V. (2021). On the tension ...
  • Saadatzadeh Hisar, B., Abdi, R., Mohammad Zadeh Salteh, H., & ...
  • Seydian Monir, S., Zanjir Dar, M., & Rafiei, N. (2019). ...
  • Zanjir Dar, M., Mousavi, R., & Saberi, M. (2013). Explaining ...
  • نمایش کامل مراجع