The solution of the time-fractional diffusion equation by the Vieta–Fibonacci collocation and residual power series methods

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 61

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JDGAA-2-1_001

تاریخ نمایه سازی: 7 مرداد 1404

چکیده مقاله:

In this paper, the numerical solution of the initial-value problem involving the time-fractional diffusion problem in the Caputo sense can be express as a series of the shifted Vieta-Fibonacci polynomials with unknown coefficients. Next, by making use of the collocation points and the relations between their coefficients via the boundary conditions, the recent problem is reduced to a system of fractional ordinary differential equations (SFODEs) with initial conditions. Then, utilizing the residual power series method (RPSM) on SFODEs, the analytic approximate solution can be achieved. To illustrate the simplicity and accuracy of the proposed method, some numerical examples are considered.

کلیدواژه ها:

Time -fractional diffusion equation ، Caputo fractional derivative ، Vieta-Fibonacci polynomials ، residual power series method

نویسندگان

Mojtaba Sajjadmanesh

Department of Mathematics and Computer Science, University of Bonab, Bonab, Iran