Application of Zirconia Nanoparticles in dentistry and oral health

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JODHN-2-3_002

تاریخ نمایه سازی: 3 مرداد 1404

چکیده مقاله:

Zirconia nanoparticles have emerged as a groundbreaking material in dentistry, offering transformative solutions for restorative, prosthetic, and implant applications due to their exceptional mechanical properties, biocompatibility, and multifunctionality. These nanoparticles enhance dental composites, such as bioactive cements, by improving hardness (e.g., ۱.۱۳ GPa Vickers hardness), modulus of elasticity, and antimicrobial efficacy against oral pathogens like Staphylococcus aureus, thereby reducing secondary caries risks. Additive manufacturing techniques, including nanoparticle jetting, enable precise fabrication of zirconia crowns with marginal deviations as low as ۲۱.۸ µm, optimizing fit and clinical efficiency. Surface modifications via plasma-sprayed zirconia coatings on titanium implants significantly enhance osseointegration, achieving ۵۴.۷% bone-implant contact in vivo, while gradient yttria-stabilized multilayered systems (e.g., KATANA™ HTML) balance aesthetics and strength (flexural strength >۸۰۰ MPa) for high-stress prosthetic frameworks. Zirconia’s bioactive and inert nature also minimizes biofilm formation and ion release, supporting long-term biocompatibility. Despite these advancements, challenges such as inherent brittleness, technique-sensitive manufacturing, and limited long-term clinical data under dynamic oral conditions necessitate further research. Future innovations should focus on hybrid composites to improve toughness, scalable fabrication protocols, and rigorous clinical validation. By bridging material science and clinical practice, zirconia nanoparticles hold immense potential to advance personalized, durable, and aesthetically driven dental care, aligning with the evolving demands of modern dentistry. Zirconia nanoparticles have emerged as a groundbreaking material in dentistry, offering transformative solutions for restorative, prosthetic, and implant applications due to their exceptional mechanical properties, biocompatibility, and multifunctionality. These nanoparticles enhance dental composites, such as bioactive cements, by improving hardness (e.g., ۱.۱۳ GPa Vickers hardness), modulus of elasticity, and antimicrobial efficacy against oral pathogens like Staphylococcus aureus, thereby reducing secondary caries risks. Additive manufacturing techniques, including nanoparticle jetting, enable precise fabrication of zirconia crowns with marginal deviations as low as ۲۱.۸ µm, optimizing fit and clinical efficiency. Surface modifications via plasma-sprayed zirconia coatings on titanium implants significantly enhance osseointegration, achieving ۵۴.۷% bone-implant contact in vivo, while gradient yttria-stabilized multilayered systems (e.g., KATANA™ HTML) balance aesthetics and strength (flexural strength >۸۰۰ MPa) for high-stress prosthetic frameworks. Zirconia’s bioactive and inert nature also minimizes biofilm formation and ion release, supporting long-term biocompatibility. Despite these advancements, challenges such as inherent brittleness, technique-sensitive manufacturing, and limited long-term clinical data under dynamic oral conditions necessitate further research. Future innovations should focus on hybrid composites to improve toughness, scalable fabrication protocols, and rigorous clinical validation. By bridging material science and clinical practice, zirconia nanoparticles hold immense potential to advance personalized, durable, and aesthetically driven dental care, aligning with the evolving demands of modern dentistry.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • 1. Behera A, Behera A. Nanomaterials. Advanced materials: an introduction ...
  • 2. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi ...
  • 3. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, ...
  • 4. Zhang X, Lu W, Zhou G, Li Q. Understanding ...
  • 5. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani ...
  • 6. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio ...
  • 7. Asadi A, Rezaee M, Ghahramani Y. Biomimetic nanomaterials in ...
  • 8. Mousavi SM, Hashemi SA, Mazraedoost S, Chiang W-H, Yousefi ...
  • 9. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable ...
  • 10. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami ...
  • 11. Serrano E, Rus G, Garcia-Martinez J. Nanotechnology for sustainable ...
  • 12. Babatunde DE, Denwigwe IH, Babatunde OM, Gbadamosi SL, Babalola ...
  • 13. Isibor PO. Regulations and policy considerations for nanoparticle safety. ...
  • 14. Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi ...
  • 15. Khan SH. Green nanotechnology for the environment and sustainable ...
  • 16. Tawiah B, Ofori EA, George SC. Nanotechnology in societal ...
  • 17. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan ...
  • 18. Mazumder DD. A Comprehensive Review on Materials Used in ...
  • 19. Mohammadi AT, mohammad Taheri SA, Karamouz M, Sarhaddi R. ...
  • 20. Huang B, Chen M, Wang J, Zhang X. Advances ...
  • 21. Zhao R, Meng X, Pan Z, Li Y, Qian ...
  • 22. Arya A. Comparative Study of the Flexural Strength and ...
  • 23. Asaad YM, Alhudaithi MK, Alazraqi MS, Almugren SS, Alhumizi ...
  • 24. Ramadoss R, Padmanaban R, Subramanian B. Role of bioglass ...
  • 25. Moazzami F, Ghahramani Y, Tamaddon AM, Dehghani Nazhavani A, ...
  • 26. Parhi S, Pal S, Das SK, Ghosh P. Strategies ...
  • 27. Hu C, Wang LL, Lin YQ, Liang HM, Zhou ...
  • 28. Jaber MA, Jaber AM, Elameen AM, Elameen FM. Evaluating ...
  • 29. Gulatia K, Chopraa D, Kocak-Oztuga NA, Verronc E, Gulati ...
  • 30. Sakaguchi RL, Powers JM. Craig's Restorative Dental Materials-E-Book: Craig's ...
  • 31. Fargas Ribas G, Armelín Diggroc EA. Polymer-zirconia based ceramic ...
  • 32. Ghazanfari A, Li W, Leu MC, Watts JL, Hilmas ...
  • 33. Kazama-Koide M, Ohkuma K, Ogura H, Miyagawa Y. A ...
  • 34. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for ...
  • 35. Kirsch A, Ackermann KL. The IMZ osteointegrated implant system. ...
  • 36. Kyratsis P, Tzotzis A, Davim JP. CAD-based Programming for ...
  • 37. Rushdie S. Advances in CAD/CAM Technology for Chairside Restorative ...
  • 38. Oye E, Owen A. Revolutionary Advancements in CAD/CAM Systems: ...
  • 39. Kaushik R, Rapaka R. A Patient-Centered Perspectives and Future ...
  • 40. Wang Q, Huang Y, Qian Z. Nanostructured surface modification ...
  • 41. Stich T, Alagboso F, Křenek T, Kovářík T, Alt ...
  • 42. Gupta S. A recent updates on zirconia implants: a ...
  • 43. Zhang Q, Sun Q, Wang R, Chi Y, Shi ...
  • 44. De Leon J, Romanos GE. The use of bioactive ...
  • 45. Florea DA, Albuleț D, Grumezescu AM, Andronescu E. Surface ...
  • 46. Oh TJ, Yoon J, Misch CE, Wang HL. The ...
  • 47. Gautam C, Joyner J, Gautam A, Rao J, Vajtai ...
  • 48. Amirtharaj Mosas KK, Chandrasekar AR, Dasan A, Pakseresht A, ...
  • 49. Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher ...
  • 50. Hannink RH, Kelly PM, Muddle BC. Transformation toughening in ...
  • 51. Ritchie RO. Toughening materials: enhancing resistance to fracture. Philosophical ...
  • 52. Kakooli HA. Evaluating the microstructure, mechanical and optical properties ...
  • 53. Roitero E, Reveron H, Gremillard L, Garnier V, Ritzberger ...
  • 54. Al-Naib UMB. Zirconia-New Advances, Structure, Fabrication and Applications: New ...
  • 55. Manfrè L, De Vivo E, Zini C, Ventura F, ...
  • 56. Sadowsky¹ SJ, Landesman HM, Hansen¹ WP. Implant Dentistry: Challenges ...
  • 57. Han M-K. Advances and challenges in zirconia-based materials for ...
  • 58. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to ...
  • 59. Kouhi M, de Souza Araújo IJ, Asa’ad F, Zeenat ...
  • 60. Shalini Parvathi M. Next Generation Dentistry Practices to Enhance ...
  • 61. Rathee G, Bartwal G, Rathee J, Mishra YK, Kaushik ...
  • 62. Khan M, Shaik MR, Khan ST, Adil SF, Kuniyil ...
  • 63. Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali ...
  • Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry [مقاله ژورنالی]
  • 65. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation ...
  • 66. Eshed M. Synthesis of Antibacterial/Anti biofilm Nanoparticles and tTheir ...
  • 67. Nobre CM, König B, Pütz N, Hannig M. Hydroxyapatite-based ...
  • 68. Alassy H, Pizarek JA, Kormas I, Pedercini A, Wolff ...
  • 69. Priyadarsini S, Mukherjee S, Bag J, Nayak N, Mishra ...
  • 70. Nizami MZI, Xu VW, Yin IX, Lung CYK, Niu ...
  • 71. Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The ...
  • 72. Bannunah AM. Biomedical applications of zirconia-based nanomaterials: challenges and ...
  • 73. Szczęsny G, Kopec M, Kowalewski ZL. Toxicity, Irritation, and ...
  • 74. Pisu M. Stability of dental alloys in artificial saliva: ...
  • 75. Kunrath MF, Gupta S, Lorusso F, Scarano A, Noumbissi ...
  • 76. Kroczek K, Turek P, Mazur D, Szczygielski J, Filip ...
  • 77. ZHONG C, WANG X. ADVANCEMENTS AND CHALLENGES IN THE ...
  • 78. Mohamed OMAA. Impact of High-speed Sintering on the Mechanical ...
  • 79. Terry D, Leinfelder K. A simplified aesthetic concept: part ...
  • 80. Aslam A, Ahmed B, AZAD AA, OVAIS N, NAYYER ...
  • 81. Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem ...
  • 82. Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu ...
  • 83. Akinribide OJ, Mekgwe GN, Akinwamide SO, Gamaoun F, Abeykoon ...
  • 84. Ungar PS, Hara AT. On the use of dental ...
  • 85. Dantas TSA. Natural-inspired tooth replacement: design and strategies: Universidade ...
  • 86. Sun H, Tabrizian P, Qambrani A, Jargalsaikhan U, Sui ...
  • 87. Dhimish M, Barth K, Bonilla R, Kim D. Ultraviolet ...
  • 88. Sharma V, Goldsworthy E, Hadimani RL, Zhao H, Barua ...
  • 89. Allen M. A novel consideration of Actinomyces's role in ...
  • 90. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani ...
  • 91. Asadi A, Khaksar E, Hosseinpoor S, Abbasi R, Ghahramani ...
  • 92. Asadi A, Khaksar E, Valanik S, Ghahramani Y. New ...
  • 93. Khaksar E, Asadi A, Rezaei M, Abbasi F, Ghahramani ...
  • نمایش کامل مراجع