Graphene-Based Nanocoatings for Dental Implants: Strengthening Performance at the Nanoscale

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JODHN-2-3_005

تاریخ نمایه سازی: 3 مرداد 1404

چکیده مقاله:

Graphene, a single layer of sp²-hybridized carbon atoms, is gaining prominence in dental implantology due to its exceptional strength, conductivity, biocompatibility, and surface functionalization capabilities. Graphene-based nanocoatings enhance implant performance by improving mechanical durability, corrosion resistance, and antibacterial activity while promoting osseointegration through osteoblast stimulation. Derivatives like graphene oxide (GO) and reduced graphene oxide (rGO) enable further customization for drug delivery and biofunctionalization. Various deposition techniques—such as chemical vapor deposition, electrophoretic deposition, and dip coating—enable uniform and functional coatings. In vitro and in vivo studies demonstrate reduced pathogen colonization and improved bone integration. Despite promising outcomes, challenges remain in standardizing coating methods, ensuring long-term safety, and achieving scalable production. Continued interdisciplinary research is essential to transition these innovations into clinical practice. This review summarizes recent developments in graphene-based nanocoatings for dental implants, focusing on material properties, biological interactions, and clinical potential, while identifying key areas for future research and clinical translation. Graphene, a single layer of sp²-hybridized carbon atoms, is gaining prominence in dental implantology due to its exceptional strength, conductivity, biocompatibility, and surface functionalization capabilities. Graphene-based nanocoatings enhance implant performance by improving mechanical durability, corrosion resistance, and antibacterial activity while promoting osseointegration through osteoblast stimulation. Derivatives like graphene oxide (GO) and reduced graphene oxide (rGO) enable further customization for drug delivery and biofunctionalization. Various deposition techniques—such as chemical vapor deposition, electrophoretic deposition, and dip coating—enable uniform and functional coatings. In vitro and in vivo studies demonstrate reduced pathogen colonization and improved bone integration. Despite promising outcomes, challenges remain in standardizing coating methods, ensuring long-term safety, and achieving scalable production. Continued interdisciplinary research is essential to transition these innovations into clinical practice. This review summarizes recent developments in graphene-based nanocoatings for dental implants, focusing on material properties, biological interactions, and clinical potential, while identifying key areas for future research and clinical translation.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • 1. Panahi O, Eslamlou SF. Bioengineering Innovations in Dental Implantology. ...
  • 2. Roccuzzo A, Imber J-C, Salvi GE, Roccuzzo M. Peri-implantitis ...
  • 3. bin Anwar Fadzil AF, Pramanik A, Basak A, Prakash ...
  • 4. Stich T, Alagboso F, Křenek T, Kovářík T, Alt ...
  • 5. Li J, Zhou P, Attarilar S, Shi H. Innovative ...
  • 6. Asadi A, Rezaee M, Ghahramani Y. Biomimetic nanomaterials in ...
  • 7. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani ...
  • 8. Batool F, Özçelik H, Stutz C, Gegout P-Y, Benkirane-Jessel ...
  • Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry [مقاله ژورنالی]
  • 10. Mitra D, Kang E-T, Neoh KG. Polymer-based coatings with ...
  • 11. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri ...
  • 12. Yusaf T, Mahamude ASF, Farhana K, Harun WSW, Kadirgama ...
  • 13. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi ...
  • 14. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi ...
  • 15. Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized ...
  • 16. Pandit S, Gaska K, Kádár R, Mijakovic I. Graphene-Based ...
  • 17. Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, ...
  • 18. Austin CP. Opportunities and challenges in translational science. Clinical ...
  • 19. Mamidi N, Delgadillo RMV, Barrera EV, Ramakrishna S, Annabi ...
  • 20. Zhang F, Yang K, Liu G, Chen Y, Wang ...
  • 21. Saha S, Roy S. Metallic Dental Implants Wear Mechanisms, ...
  • 22. Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi ...
  • 23. Magne TM, de Oliveira Vieira T, Alencar LMR, Junior ...
  • 24. Guo S, Garaj S, Bianco A, Ménard-Moyon C. Controlling ...
  • 25. Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez ...
  • 26. Shao Y, Sun Z, Tian Z, Li S, Wu ...
  • 27. Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites ...
  • 28. Wu S, Xu J, Zou L, Luo S, Yao ...
  • 29. Kang MS, Jeong SJ, Lee SH, Kim B, Hong ...
  • 30. Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin ...
  • 31. Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-Based ...
  • 32. Srimaneepong V, Skallevold HE, Khurshid Z, Zafar MS, Rokaya ...
  • 33. Bertran-Serra E, Rodriguez-Miguel S, Li Z, Ma Y, Farid ...
  • 34. Vir Singh M, Kumar Tiwari A, Gupta R. Catalytic ...
  • 35. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, ...
  • 36. Kim C-H, Lee S-Y, Rhee KY, Park S-J. Carbon-based ...
  • 37. Atiq Ur Rehman M, Chen Q, Braem A, Shaffer ...
  • 38. Butt MA. Thin-Film Coating Methods: A Successful Marriage of ...
  • 39. Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition ...
  • 40. Sharif S, Ahmad KS, Rehman F, Bhatti Z, Thebo ...
  • 41. Afsharimani N, Talimian A, Merino E, Durán A, Castro ...
  • 42. Omer S, Forgách L, Zelkó R, Sebe I. Scale-up ...
  • 43. Mateos-Maroto A, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán ...
  • 44. Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings ...
  • 45. Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi ...
  • 46. Li X, Liang X, Wang Y, Wang D, Teng ...
  • 47. Pandey C, Rokaya D, Bhattarai BP. Contemporary Concepts in ...
  • 48. Liu S, Zhang L, Li Z, Gao F, Zhang ...
  • 49. Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy ...
  • 50. Shin YC, Bae J-H, Lee JH, Raja IS, Kang ...
  • 51. Xie M, Gao M, Yun Y, Malmsten M, Rotello ...
  • 52. Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi ...
  • 53. Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent Strategies to ...
  • 54. Williams AG, Moore E, Thomas A, Johnson JA. Graphene-Based ...
  • 55. Liu J, Liu Z, Pang Y, Zhou H. The ...
  • 56. Li Y, Chen M, Yan J, Zhou W, Gao ...
  • 57. Atia GA, Abdal Dayem A, Taher ES, Alghonemy WY, ...
  • 58. Inchingolo AM, Malcangi G, Inchingolo AD, Mancini A, Palmieri ...
  • 59. Singh AB, Khandelwal C, Dangayach GS. Revolutionizing healthcare materials: ...
  • 60. Vafadar A, Guzzomi F, Rassau A, Hayward K. Advances ...
  • 61. Davis R, Singh A, Jackson MJ, Coelho RT, Prakash ...
  • 62. Artrith N, Butler KT, Coudert F-X, Han S, Isayev ...
  • 63. Li J, Zeng H, Zeng Z, Zeng Y, Xie ...
  • 64. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation ...
  • 65. Hosseinpour S, Gaudin A, Peters OA. A critical analysis ...
  • 66. Xiao Y, Pang YX, Yan Y, Qian P, Zhao ...
  • 67. Ben Charif A, Zomahoun HTV, Gogovor A, Abdoulaye Samri ...
  • 68. Shokri A, Fard MS. Water-energy nexus: Cutting edge water ...
  • 69. Zhou L, Miller J, Vezza J, Mayster M, Raffay ...
  • 70. Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini ...
  • 71. Malekmohammadi S, Mohammed RUR, Samadian H, Zarebkohan A, García-Fernández ...
  • 72. Liu C, Tan D, Chen X, Liao J, Wu ...
  • 73. Yan D, Wang Z, Zhang Z. Stimuli-Responsive Crystalline Smart ...
  • 74. Wei H, Cui J, Lin K, Xie J, Wang ...
  • 75. Akbarzadeh FZ, Sarraf M, Ghomi ER, Kumar VV, Salehi ...
  • 76. Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-inspired ...
  • 77. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami ...
  • 78. Zhang Z, Liu A, Fan J, Wang M, Dai ...
  • 79. Weissler EH, Naumann T, Andersson T, Ranganath R, Elemento ...
  • 80. Hull SM, Brunel LG, Heilshorn SC. 3D Bioprinting of ...
  • 81. Rossoni AL, de Vasconcellos EPG, de Castilho Rossoni RL. ...
  • 82. Roohani I, Newsom E, Zreiqat H. High-resolution vat-photopolymerization of ...
  • 83. Ramburrun P, Khan RA, Choonara YE. Design, preparation, and ...
  • 84. Cheng J, Liu J, Wu B, Liu Z, Li ...
  • 85. Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian ...
  • 86. Jena G, Philip J. A review on recent advances ...
  • 87. Kar A, Ahamad N, Dewani M, Awasthi L, Patil ...
  • 88. Ramezani M, Ripin ZM. An Overview of Enhancing the ...
  • 89. Kumar A, Singh G. Surface modification of Ti6Al4V alloy ...
  • 90. Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh ...
  • 91. Khaksar E, Asadi A, Rezaei M, Abbasi F, Ghahramani ...
  • 92. Asadi A, Khaksar E, Valanik S, Ghahramani Y. New ...
  • 93. Asadi A, Khaksar E, Hosseinpoor S, Abbasi R, Ghahramani ...
  • نمایش کامل مراجع