Neuromorphic Computing and Graph Theory Applications in Information Processing Optimization

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 107

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICECM10_034

تاریخ نمایه سازی: 1 مرداد 1404

چکیده مقاله:

This paper explores the intersection of neuromorphic computing and graph theory, emphasizing the role of graph-based models in optimizing neural network structures and enhancing information processing in neuromorphic systems. Neuromorphic computing, inspired by the biological nervous system, presents a paradigm for creating more efficient and adaptable AI systems. The use of graph theory provides a mathematical framework for optimizing network architecture, improving stability, and enabling faster learning processes. By integrating graph-based optimization algorithms, neuromorphic systems can address complex challenges in fields such as robotics, machine learning, and autonomous systems. Experimental results and theoretical models show promising improvements in processing speed and learning adaptability.

نویسندگان

Sara Shirzadeh Hagigi

Associate Degree Student in Software Engineering, Alzahra Technical College of Mashhad

Anis Malekzadeh

Ph.D. in Electrical Engineering Control, Professor at Technical and Vocational University