Multi-objective Optimization of Staggered Tube Banks in Cross-flow Using Machine Learning and Genetic Algorithm
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 43
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAFM-18-9_001
تاریخ نمایه سازی: 30 تیر 1404
چکیده مقاله:
This paper presents the numerical multi-objective optimization of staggered tube banks in cross-flow using neural networks and genetic algorithm. The objective is to determine the optimal dimensionless transverse and longitudinal pitches that establish a proper compromise between heat transfer enhancement and pressure drop minimization across a wide range of inlet Reynolds numbers (۱,۰۰۰–۵۰,۰۰۰). Tube banks simulations are performed for randomly selected pairs of design points to generate data on Nusselt number and friction factor. This dataset is used to train neural networks, which predict heat transfer and pressure drop characteristics as functions of dimensionless pitches. Appropriate objective functions are defined using trained neural networks and integrated into Genetic Algorithm to efficiently identify Pareto-optimal solutions. Results indicate that Reynolds number has a negligible effect on the Pareto front, as the optimal trade-offs between heat transfer and pressure drop remain consistent across different flow regimes. The best point on the Pareto front, defined as the solution with the minimum distance to the utopia point, exhibits dimensionless longitudinal and transverse pitches of approximately ۰.۹۰ and ۱.۳۰, respectively, regardless of the Reynolds number. Additionally, the study confirms that compact tube banks with dimensionless longitudinal pitches smaller than ۱.۰, often excluded in experimental and numerical studies, can be successfully simulated and optimized using the proposed framework. The findings provide practical guidelines for designing high-efficiency staggered tube banks and demonstrate a computationally efficient approach to optimize heat exchanger configurations without relying on empirical correlations.
کلیدواژه ها:
Cross-flow staggered tube banks ، Multi-objective optimization ، Heat transfer ، Genetic Algorithm ، Machine learning
نویسندگان
A. Tamanaei
Department of Mechanical Engineering, TU Darmstadt, Karolinenplatz ۵, ۶۴۲۸۹ Darmstadt, Germany
F. Kowsary
School of Mechanical Engineering, College of Engineering, University of Tehran, North Kargar St., Tehran, Iran
S. Sahamifar
Department of Mechanical, Industrial, and Mechatronics Engineering, Toronto Metropolitan University, Toronto, M۵B ۲K۳, Canada
F. Samadi
Mechanical Engineering Dept., The University of Alabama, Tuscaloosa, AL, USA
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :