A Machine Learning Approach for Differential Diagnosis of Vascular and Non-Vascular Intracranial Hemorrhage in Non-Contrast CT Images

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 12

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-22-2_002

تاریخ نمایه سازی: 30 تیر 1404

چکیده مقاله:

Introduction: Accurate diagnosis of acute Intracranial Hemorrhage (ICH) involving vascular and non-vascular bleeding has proven to be challenging due to the visual complexities in non-contrast Computed Tomography images (NCCT). Consequently, there has been a necessity for the adoption of novel techniques to address this issue, recently. This study aims to develop a new framework for automatic and accurate diagnosis of ICH and the ability of machine learning to differentiate vascular and non-vascular causes of Intracranial hemorrhages based on CT scan images without contrast material. Determining whether intracranial hemorrhage is vascular or non-vascular is clinically significant as it influences treatment decisions. Material and Methods: In this retrospective study, NCCT images were gathered from a group of ۳۷۰ patients, comprising ۶۷ subjects with vascular bleeding and ۳۰۳ with non-vascular bleeding. Radiomics features encompassing morphological, texture, and intensity-related characteristics, were extracted for every image slice. Subsequently, the effectiveness of five classification methods—namely, Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), Decision Tree (DT) and K-Nearest Neighbors (KNN) was evaluated. Results: Metrics for evaluating classification methods, sensitivity, specificity and accuracy for the Logistic Regression were ۵۵%, ۶۵% and ۶۳%, respectively. The AUC-ROC in this model was ۰.۶۶, which is better than other methods with large margin. Conclusion: In this study, an evaluation of five different classification methods revealed that all of them exhibited sufficient level of specificity. However, when it comes to classification sensitivity and accuracy, the Logistic Regression approach outperformed the others.

کلیدواژه ها:

Intracranial Hemorrhages ، Machine Learning ، Computed X ray Tomography

نویسندگان

Sahar Faraji

Department of medical physics, Faulty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Bita Abbasi

Department of Radiology, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran

Amin Amiri Tehranizadeh

Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Zeinab Naseri

Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Lida Jarahi

Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Fatemeh Khojasteh Rahimi

Department of Radiology, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran

shahrokh Nasseri

Department of medical physics, Faulty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Azadeh Hashemi

Department of Radiology, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Feigin VL. Stroke in developing countries: can the epidemic be ...
  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. ...
  • Garg R, Biller J. Recent advances in spontaneous intracerebral hemorrhage. ...
  • Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. ...
  • van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel ...
  • O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, ...
  • Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. ...
  • Andersen KK, Olsen TS, Dehlendorff C, Kammersgaard LP. Hemorrhagic and ...
  • Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, ...
  • Wieberdink RG, Poels MM, Vernooij MW, Koudstaal PJ, Hofman A, ...
  • Emerging Risk Factors Collaboration; Sarwar N, Gao P, Seshasai SR, ...
  • Rost NS, Greenberg SM, Rosand J. The genetic architecture of ...
  • Vanent KN, Leasure AC, Acosta JN, Kuohn LR, Woo D, ...
  • Lee M, Saver JL, Chang KH, Liao HW, Chang SC, ...
  • Sheth KN. Spontaneous Intracerebral Hemorrhage. N Engl J Med. ۲۰۲۲ ...
  • Hemphill JC ۳rd, Greenberg SM, Anderson CS, Becker K, Bendok ...
  • Macellari F, Paciaroni M, Agnelli G, Caso V. Neuroimaging in ...
  • Morotti A, Goldstein JN. Diagnosis and Management of Acute Intracerebral ...
  • Strub WM, Leach JL, Tomsick T, Vagal A. Overnight preliminary ...
  • Chan KT, Carroll T, Linnau KF, Lehnert B. Expectations Among ...
  • Ioffe S. Batch normalization: Accelerating deep network training by reducing ...
  • Breast Cancer Diagnosis from Perspective of Class Imbalance [مقاله ژورنالی]
  • Association Rule Mining-Based Radiomics in Breast Cancer Diagnosis [مقاله ژورنالی]
  • Chockley K, Emanuel E. The End of Radiology? Three Threats ...
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. ۲۰۱۵ ...
  • Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with ...
  • Shinohara Y, Takahashi N, Lee Y, Ohmura T, Kinoshita T. ...
  • Sage A, Badura P. Intracranial hemorrhage detection in head CT ...
  • Alfaer NM, Aljohani HM, Abdel-Khalek S, Alghamdi AS, Mansour RF. ...
  • Nafees Ahmed S, Prakasam P. A systematic review on intracranial ...
  • Maghami M, Sattari SA, Tahmasbi M, Panahi P, Mozafari J, ...
  • Wang X, Shen T, Yang S, Lan J, Xu Y, ...
  • Altuve M, Pérez A. Intracerebral hemorrhage detection on computed tomography ...
  • Cearns M, Hahn T, Baune BT. Recommendations and future directions ...
  • Ding C, Peng H. Minimum redundancy feature selection from microarray ...
  • Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy ...
  • Kohavi R, John GH. Wrappers for feature subset selection. Artificial ...
  • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection ...
  • Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, ...
  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic ...
  • Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for models ...
  • Schmitt N, Mokli Y, Weyland CS, Gerry S, Herweh C, ...
  • Hopkins BS, Murthy NK, Texakalidis P, Karras CL, Mansell M, ...
  • Seyam M, Weikert T, Sauter A, Brehm A, Psychogios MN, ...
  • Altuve M, Pérez A. Intracerebral hemorrhage detection on computed tomography ...
  • Tang Z, Zhu Y, Lu X, Wu D, Fan X, ...
  • Cortés-Ferre L, Gutiérrez-Naranjo MA, Egea-Guerrero JJ, Pérez-Sánchez S, Balcerzyk M. ...
  • Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, ...
  • Tharek A, Muda AS, Hudi AB, Hudin AB. Intracranial hemorrhage ...
  • Rao BN, Mohanty S, Sen K, Acharya UR, Cheong KH, ...
  • Voter AF, Larson ME, Garrett JW, Yu JP. Diagnostic accuracy ...
  • Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. ...
  • Abe D, Inaji M, Hase T, Takahashi S, Sakai R, ...
  • Trevisi G, Caccavella VM, Scerrati A, Signorelli F, Salamone GG, ...
  • Uchida K, Kouno J, Yoshimura S, Kinjo N, Sakakibara F, ...
  • نمایش کامل مراجع