Automatic Diagnosis of Traumatic Brain Injury Using Deep Learning with CT scan Images

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-22-2_006

تاریخ نمایه سازی: 30 تیر 1404

چکیده مقاله:

Introduction: Traumatic brain injury (TBI) results from external mechanical forces to the head, leading to brain dysfunction. The severity of injury significantly impacts patient health outcomes. Rapid and accurate diagnosis is essential for timely clinical intervention. Computed Tomography (CT) scans are currently the primary imaging modality for identifying intracranial injuries. However, manual analysis of CT images is time-consuming and highly dependent on radiologists’ expertise.Material and Methods: This study proposes an automated approach for detecting intracranial hemorrhage and skull fractures using Convolutional Neural Networks (CNNs). CT scan images containing various pathologies were collected from the Picture Archiving and Communication System (PACS). The dataset was divided into two classes: pathological and non-pathological. Images were resized to ۱۲۸ × ۱۲۸ pixels to reduce computational complexity and split into training (۹۰%) and validation (۱۰%) sets. Pre-trained ResNet۱۸ and ResNet۳۴ models were employed for classification. Evaluation metrics such as accuracy, precision, recall, and F-score were computed using a confusion matrix.Results: The CNN model achieved an accuracy of ۰.۹۴, a precision of ۱.۰, and a recall of ۰.۸۸ in classifying CT images.Conclusion: These findings indicate that CNN-based models can assist radiologists in faster and more consistent diagnosis of traumatic brain injuries. Further improvements may be achieved by increasing dataset size, refining preprocessing steps, and applying advanced optimization techniques to enhance generalization and robustness.

نویسندگان

Behrang Rezvani Kakhki

Associate Professor of Emergency medicine, Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Hossein Zakeri

Assistant professor of Emergency medicine, Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Sayyed Majid Sadrzadeh

Associate Professor of Emergency medicine, Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Seyed Mohammad Mousavi

Associate Professor of Emergency medicine, Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

elnaz vafadar moradi

Associate Professor of Emergency medicine, Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

golnoush shahraki

Master of Biomedical Engineering, Clinical Research Development Unit ,Shahid Hasheminejad Hospital, Medical Sciences University Of Mashhad, Mashhad,Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Noor NS, Ibrahim H. Machine learning algorithms and quantitative electroencephalography ...
  • Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RS, ...
  • GBD ۲۰۱۹ Dementia Collaborators. The burden of dementia due to ...
  • Stubbs JL, Thornton AE, Sevick JM, Silverberg ND, Barr AM, ...
  • De Geus EQ, Milders MV, Van Horn JE, Jonker FA, ...
  • Ponsford J, Fleminger S. Long term outcome of traumatic brain ...
  • Williams WH, Evans JJ. Brain injury and emotion: An overview ...
  • Mohd Noor NS, Ibrahim H. Predicting outcomes in patients with ...
  • Kuang Z, Deng X, Yu L, Zhang H, Lin X, ...
  • Rajaei F, Cheng S, Williamson CA, Wittrup E, Najarian K. ...
  • Shao H, Zhao H. Automatic analysis of a skull fracture ...
  • Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, ...
  • Hale AT, Stonko DP, Lim J, Guillamondegui OD, Shannon CN, ...
  • Albert B, Zhang J, Noyvirt A, Setchi R, Sjaaheim H, ...
  • Ellethy H, Chandra SS, Nasrallah FA. The detection of mild ...
  • Sinha M, Kennedy CS, Ramundo ML. Artificial neural network predicts ...
  • Grewal M, Srivastava MM, Kumar P, Varadarajan S. Radnet: Radiologist ...
  • Mansour RF, Aljehane NO. An optimal segmentation with deep learning ...
  • Nag MK, Gupta A, Hariharasudhan AS, Sadhu AK, Das A, ...
  • Aghazadeh BS, Khaleghi M, Pidaparti R, Najarian K. Intracranial pressure ...
  • Chen W, Belle A, Cockrell C, Ward KR, Najarian K. ...
  • Tu KC, Eric Nyam TT, Wang CC, Chen NC, Chen ...
  • Shahraki G, Irankhah E. Diagnosis of epilepsy disease with MRI ...
  • Hassanipour S, Ghaem H, Arab-Zozani M, Seif M, Fararouei M, ...
  • Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, ...
  • Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, ...
  • Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, ...
  • Venkatesan R, Li B. Convolutional neural networks in visual computing: ...
  • Chen L, Cruz A, Ramsey S, Dickson CJ, Duca JS, ...
  • Krishna ST, Kalluri HK. Deep learning and transfer learning approaches ...
  • Chen Z, Jiang Y, Zhang X, Zheng R, Qiu R, ...
  • Hasnain M, Pasha MF, Ghani I, Imran M, Alzahrani MY, ...
  • Pappu S, Lerma J, Khraishi T. Brain CT to assess ...
  • Subaar C, Addai FT, Addison EC, Christos O, Adom J, ...
  • نمایش کامل مراجع