Chest CT in Pulmonary Fibrosis: A Narrative Review of Imaging Patterns and Their Prognostic Significance
محل انتشار: مجله پزشکی قلب و قفسه سینه، دوره: 13، شماره: 2
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCTM-13-2_006
تاریخ نمایه سازی: 30 تیر 1404
چکیده مقاله:
Pulmonary fibrosis represents a heterogeneous group of interstitial lung diseases (ILDs) marked by progressive scarring of the lung parenchyma and declining respiratory function. High-resolution computed tomography (HRCT) plays a pivotal role in diagnosing and managing fibrotic ILDs, particularly idiopathic pulmonary fibrosis (IPF), connective tissue disease-associated ILD (CTD-ILD), and chronic hypersensitivity pneumonitis (CHP). This narrative review explores key imaging patterns observable on chest CT and their prognostic implications across these major subtypes. We conducted a literature review of studies published between ۲۰۱۰ and ۲۰۲۵ using PubMed, Scopus, and Web of Science, focusing on CT features, subtype differentiation, prognostic imaging biomarkers, and recent innovations in radiomics and artificial intelligence (AI). Characteristic HRCT findings, such as honeycombing, reticulation, ground-glass opacities, and traction bronchiectasis, were analyzed in the context of usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) patterns. UIP pattern on HRCT is strongly associated with IPF and confers a worse prognosis compared to NSIP or other non-UIP patterns. Quantitative imaging methods and automated CT analytics offer objective measurements of fibrosis extent and have demonstrated promising correlations with physiologic parameters such as forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO). Emerging AI tools enhance disease classification, monitor progression, and support clinical decision-making. Despite substantial advances, challenges such as inter-reader variability, limited access to quantitative software, and unstandardized CT protocols persist. Furthermore, AI applications require broader validation in multicenter cohorts before routine implementation. This review highlights the central role of HRCT in the multidisciplinary evaluation of pulmonary fibrosis. It underscores the prognostic significance of specific imaging features and advocates for standardized imaging interpretation and the integration of AI to refine diagnostic accuracy and therapeutic planning.
نویسندگان
Mehrshad Dabbagh
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Mohammad Amin Shajareh Pour Salavati
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Yas Zeinaly Parizi
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :