Neuro-fuzzy inference system and white shark optimization of coagulation-flocculation of aquaculture wastewater treatment
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 96
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GJESM-11-3_001
تاریخ نمایه سازی: 30 تیر 1404
چکیده مقاله:
BACKGROUND AND OBJECTIVES: Polymeric flocculants derived from the coagulation-flocculation procedure, such as chitosan, effectively remove algal-bacterial biomass from wastewater treatment, demonstrating efficiencies comparable to ferric salts at reduced dosages. The optimal operating condition of coagulation-flocculation in aquaculture wastewater treatment particularly requires defining accurate values of three input parameters: potential of hydrogen, chitosan dose, and settling time. Therefore, the objective of this study is determining the optimal operating condition of coagulation-flocculation through optimizing the values of the three input parameters.METHODS: Artificial intelligence and recent optimzation algorithms are integrated to achieve the purpose of this study work. Initially, an adaptive neuro-fuzzy inference system model of the wastewater treatment process was built based on experimental data. The white shark optimizer is then used to calculate the optimal chitosan dose, potential of hydrogen, and settling time for reducing turbidity and salinity. During the optimization process, these controlling parameters are used as a design variable whereas the objective function required to me be a maximum is the summation of turbidity removal and salinity removal. FINDINGS: The adaptive neuro-fuzzy inference system turbidity removal model has root mean square error values of ۳.۵۲e-۰۵ and ۱.۵۱ for training and testing data, respectively. The R-squared values for testing and training are ۰.۷۶ and ۱.۰, respectively. In compared to analysis of variance adaptive neuro-fuzzy inference system lowered the root mean square error from ۲.۸ to ۰.۸۳۶ (a ۷۰ percent decrease). The estimated R-squared value rose by ۱۱.۷۶ percent, from ۰.۶۸ with analysis of variance to ۰.۷۶ with adaptive neuro-fuzzy inference system. The adaptive neuro-fuzzy inference system approach to salinity removal has root mean square error values of ۷.۱۳e-۰۶ and ۲.۰۴۵ for training and testing. The R-squared values for training and testing are ۱.۰ and ۰.۸۲, respectively, and adaptive neuro-fuzzy inference system reduced the root mean square error from ۶.۸ with analysis of variance to ۱.۱۳۵ with adaptive neuro-fuzzy inference system achieving an ۸۳.۵ percent reduction. The R-squared value for prediction rose ۷.۲ percent from ۰.۷۶۵ via analysis of variance to ۰.۸۲ via adaptive neuro-fuzzy inference system.CONCLUSION: Adaptive neuro-fuzzy inference system succseded to present an accurate model of wastewater treatment process and white shark optimizer defined accutrelly the values of chitosan dose, pontential of hydrogen, and settling time to reduce turbidity and salinity. Accordingly, optimizing chitosan-based coagulation-flocculation offers significant environmental benefits by reducing toxic chemical usage and minimizing sludge generation, leading to less pollution.
کلیدواژه ها:
نویسندگان
A.F. Mohamed
Industrial Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Mecca, Saudi Arabia
H. Rezk
Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :