Effects of a Complex Feed Additive on Productivity and Blood Parameters of Laying Hens Using Stochastic Fractal-based Neural Network Model

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PSJG-13-2_010

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Neural networks (NNs) benefit biomedicine and agriculture, especially when relying on the specificity and implementation of stochastic fractal-supported models. In the poultry industry, a particular challenge is the search for an ideal sorbent-based complex additive to minimize the loss of valuable feed components that can be tailored to groups of gastrointestinal microorganisms. The aim of this study was thus to develop and apply a mathematical model and Gaussian NN to analyze productivity and blood parameters of laying hens when administering a complex feed additive from the mineral shungite sorbent, plus a nutritive supplement of brown seaweed meal. We developed and built a computational NN that modelled the stochastic ManyToOne relationship of an array of hens’ main blood parameters and performance traits. The results presented herein were that the artificial computational stochastic fractal-based NN (EuclidNN) first effectively analyzed the profiles of operational taxonomic units (OTUs) of the physiological/biochemical blood parameters. Also, correlation coefficients were highly positive in relation to certain zootechnical indicators, suggesting that feed additive intake may have led to changes in these performance traits. Calculations suggested that when implementing the feed additive, the values of the Cognitive Salience Index (CSI) vector vCSI۲ declined. Hereby, this vector correlates with, and affects the egg production trait. Moreover, there was a certain relationship between the feed additive intake and feed and water consumption. Further, EuclidNN computed the respective bioconsolidation indices of hens and, simultaneously, processed several profiles of OTUs for all experimental variants. It also contributed to the calculation of bioconsolidation index values for each variant, i.e., a quantitative assessment of the physiological/biochemical blood descriptors, depending on diet. Collectively, the poultry productivity prediction based on the developed model and NN is pivotal as an initial step for future improvements of economically important traits in chickens when using novel and efficient complex feed additives.

نویسندگان

Larisa Karpenko

Federal State-Funded Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, St. Petersburg, ۱۹۶۰۸۴, Russia

Alesya Bakhta

Federal State-Funded Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, St. Petersburg, ۱۹۶۰۸۴, Russia

Olga Babich

Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, ۲۳۶۰۱۶, Russia

Stanislav Sukhikh

Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, ۲۳۶۰۱۶, Russia

Nikolay Vorobyov

All-Russian Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg , ۱۹۶۶۰۸, Russia ۴School of Natural Sciences, University of Kent, Canterbury, CT۲ ۷NJ, UK

Ilya Nikonov

Federal State-Funded Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, St. Petersburg, ۱۹۶۰۸۴, Russia

Solomonida Borisova

Federal State-Funded Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, St. Petersburg, ۱۹۶۰۸۴, Russia

Darren Griffin

School of Natural Sciences, University of Kent, Canterbury, CT۲ ۷NJ, UK

Michael Romanov

School of Natural Sciences, University of Kent, Canterbury, CT۲ ۷NJ, UK

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Anastasiadis AD. ۲۰۰۵. Neural networks training and applications using biological ...
  • Batushansky A, Toubiana D & Fait A. ۲۰۱۶. Correlation-based network ...
  • Chakraverty S, Jena RM & Jena SK. ۲۰۲۳.Time-fractional Order Biological ...
  • Filntisi A, Papangelopoulos N, Bencurova E, Kasampalidis I, Matsopoulos G, ...
  • Gao X, Cassidy A, Schwarzschild MA, Rimm EB & Ascherio ...
  • Gorodnichev RM, Pestryakova LA, Ushnitskaya LA, Levina SN & Davydova ...
  • Grishanov GV & Grishanova YuN. ۲۰۱۰. [Methods for Studying and ...
  • Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, ...
  • Ignatov I & Mosin O. ۲۰۱۴. [Composition and structural properties ...
  • Jahanmiri F & Parker DC. ۲۰۲۲. An overview of fractal ...
  • Kirikovich SA, Kirikovich YuK & Kurepin AA. ۲۰۱۲. [The influence ...
  • Kochish II, Smolensky VI, Laptev GY, Romanov MN, Nikonov IN, ...
  • Kochish II, Romanov MN, Nikonov IN. ۲۰۲۰a. Ways to improve ...
  • Kochish II, Pozyabin SV, Vorobyov NI & Nikonov IN. ۲۰۲۰b. ...
  • Moroz LI & Maslovskaya AG. ۲۰۲۰. Hybrid stochastic fractal-based approach ...
  • Schmidhuber J. ۲۰۱۵. Deep learning in neural networks: An overview. ...
  • Vorobyov NI, Selina MV, Guselnikova AA, Nikonov IN & Sidnev ...
  • Wentzel ES. ۱۹۹۹. [Probability Theory]. ۶th ed. Vysshaya Shkola. Moscow, ...
  • Zhu B, Shin U & Shoaran M. ۲۰۲۱. Closed-loop neural ...
  • نمایش کامل مراجع