Detecting multiple myeloma by a deep learning algorithm from lytic bone lesions on computed tomography

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 97

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_660

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background: Multiple myeloma (MM) is the second most common hematologic malignancy, with early detection crucial for improving patient outcomes. Imaging, particularly CT scans, plays a key role in identifying lytic bone lesions, but manual detection is time-consuming and challenging. Deep learning (DL) offers a promising solution by automating lesion detection, potentially enhancing diagnostic accuracy and efficiency. Methods: To maintain a rigorous and systematic methodology, we followed the PRISMA framework during our review. An extensive literature search was performed using prominent databases such as PubMed, Cochrane, Web of Science, and Scopus. Key search terms included 'artificial intelligence', 'deep learning', 'image processing', 'multiple myeloma', and 'computed tomography' combined with Boolean operators (AND, OR) to optimize retrieval. The search was restricted to studies published from December ۲۰۱۸ to November ۲۰۲۴, yielding an initial set of ۷۴۱ articles. Following a quality assessment using the ۲۰۱۸ CASP checklists, we finalized our review with ۱۴ selected studies. Results: Machine learning algorithms, particularly deep learning models, show significant promise in detecting lytic lesions associated with MM, achieving accuracy rates over ۸۰% in distinguishing between MM patients and healthy individuals. A multimodal approach combining CT imaging, laboratory assessments, patient histories, and bone marrow biopsies demonstrated a sensitivity of ۹۱.۶%, specificity of ۸۴.۶%, and a lesion detection AUROC of ۹۰.۴%. However, challenges remain in implementing these methods clinically, including data variability, algorithm interpretability, and the need for extensive validation studies. Conclusion: AI-enhanced CT imaging holds significant potential for early MM diagnosis and personalized risk assessment. Integrating deep learning with clinical data could revolutionize MM screening and treatment planning. Future research should focus on improving algorithm robustness, generalizability across diverse populations, and real-world validation to ensure clinical utility. This advancement could lead to faster, more accurate diagnoses, ultimately improving patient survival and quality of life.

نویسندگان

Niloofar Choobin

Student Research Committee, Faculty of Para-medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Seyed Reza Mirloohi

Student Research Committee, Faculty of Para-medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Vatankhah Mobina

Student Research Committee, Faculty of Para-medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Asma Ahmadi

Student Research Committee, Faculty of Para-medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Abolfazl Zanghaei

Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran