AI Models for Predicting Adverse Drug Reactions in Polypharmacy Dental Patients
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 54
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_641
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Polypharmacy is the use of more than one medication at a time. Many medications increase the risk of adverse drug reactions (ADRs). ADRs will be increasingly relevant to dentistry, with polypharmacy being a common occurrence in dental therapy such as extractions and implants. AI and machine-learning based models appear to predict ADRs by analyzing complex data patterns from patient medications, conditions, and treatments. This review aims to summarize the available methodologies in AI to predict ADR in polypharmacy dentistry patients and to examine the performance of AI to predict ADRs. Methods: literature search in PubMed, Scopus, and Web of Science (۲۰۱۵–۲۰۲۴) for the terms “AI in dentistry”, “polypharmacy” and "adverse drug reactions" was performed using selected keywords, and articles that focused on machine learning models applied to patient data with three or more medications met the selection criteria. The recurring sources of data extracted were: demographics, comorbidities, medications, and treatment. XGboost provided the highest performance for predicting ADR from structured medical data and using the patient data, predict the effect of ADR on patient outcome. Missing data was addressed by utilizing multiple imputation techniques and accuracy, AUC, sensitivity, specificity and F۱-score were used to demonstrate model performance. SHAP values were used to assess feature importance. Results: AI models, especially gradient boosting models, demonstrated robust predictive performance, with AUC values ranging from ۰.۸۵ to ۰.۹۰. Key predictors of ADR risk included drug interactions (e.g., ibuprofen-warfarin), high medication dosages (e.g., amoxicillin), and comorbidities such as cardiovascular disease. These models successfully identified over ۸۰% of high-risk ADR cases, providing clinicians with actionable insights for preventive measures. Conclusion: AI models can predict ADR in polypharmacy dentistry patients. It will improve patient safety and outcomes. Future research can validate in real-world settings, health datasets, and ensure ethical frameworks are complete for fair and clinically trusted data sharing.
کلیدواژه ها:
نویسندگان
Amirparsa Partovifar
Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.