Automated TEM/SEM Image Analysis for Drug-Loaded Nanoparticles Using Machine Learning
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 88
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_596
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: The precise characterization of drug-loaded nanoparticles is essential for evaluating their efficacy in drug delivery applications. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) are standard techniques for nanoparticle imaging, yet manual analysis remains labor-intensive and subject to variability. This study proposes a machine learning-driven approach to automate TEM/SEM image analysis, enabling accurate and efficient identification of drug-loaded nanoparticles. Methods: A comprehensive dataset was curated from two primary sources: (۱) publicly available repositories such as NanoMine and Material Data Facility (MDF), which provide high-resolution TEM/SEM images of nanoparticles, and (۲) peer-reviewed scientific literature featuring relevant microscopy images of drug-loaded nanoparticles. Image preprocessing techniques, including noise reduction, contrast enhancement, and feature extraction, were employed to optimize input quality. A Convolutional Neural Network (CNN) model was developed alongside conventional machine learning classifiers such as Support Vector Machine (SVM) and Random Forest to categorize nanoparticles based on morphology, drug-loading efficiency, and surface characteristics. Performance was evaluated using key metrics including accuracy, precision, recall, and F۱-score. Results: The CNN-based model exhibited superior classification performance, achieving an accuracy of ۹۴.۲%. It effectively distinguished between loaded and unloaded nanoparticles with high specificity and sensitivity, demonstrating its potential as a reliable alternative to manual assessment. Conclusion: Leveraging machine learning for TEM/SEM image analysis significantly enhances the efficiency and consistency of nanoparticle characterization in drug delivery research. By reducing reliance on manual interpretation, this approach minimizes human bias and accelerates analytical workflows. Future efforts will focus on expanding the dataset and incorporating advanced AI methodologies, such as transfer learning, to further refine model accuracy and generalizability
کلیدواژه ها:
نویسندگان
Esmaiel Zeynalazar Sharabiani
Tabriz University of Medical Sciences/ Faculty of Pharmacy
Ali Yousefi
Tabriz University of Medical Sciences/ Faculty of Pharmacy