A Comparative Classifier-Based Approach of an AI-Driven Clinical Decision Support System for Accurate Diagnosis of Ischemic Heart Disease
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 90
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_551
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Ischemic Heart Disease (IHD) is a leading cause of mortality worldwide and is often misdiagnosed due to overlapping symptoms with other cardiovascular conditions. This study aimed to develop an Artificial Intelligence (AI)-driven Clinical Decision Support System (CDSS) to aid in the accurate diagnosis of IHD using machine learning classifiers. Methods: A retrospective dataset comprising ۸۰۰ clinical records was used, with ۷۱۲ cases retained after preprocessing. The data included ۱۶ attributes such as age, sex, blood pressure, cholesterol, diabetes status, and personal habits. Attribute selection was informed by expert consultation and benchmark UCI datasets. Using Weka ۳.۷.۰, ۵۹ AI classification models were initially evaluated across multiple classifier families including Bayesian, tree-based, neural networks, rule-based, lazy learners, and support vector machines. Model performance was assessed using ۱۰-fold cross-validation with sensitivity, specificity, accuracy, precision, F-measure, kappa statistics, and ROC area as key metrics. The top-performing algorithms were integrated into the CDSS prototype and evaluated against physician diagnoses and gold-standard ECG-based diagnoses. Results: The KSTAR classifier demonstrated the highest performance with an accuracy of ۷۹.۳۲%, sensitivity of ۸۹%, specificity of ۷۹%, and ROC of ۰.۹۹۵. Other models such as IBk, RandomTree, and MLP also exhibited high diagnostic reliability. The CDSS showed substantial agreement with physician impressions (k = ۰.۴۵, p < ۰.۰۰۱), indicating its potential utility in real-world clinical settings. Conclusion: AI-based CDSS can significantly enhance diagnostic accuracy for IHD and support clinical decision-making, particularly in resource-limited settings.
کلیدواژه ها:
Clinical Decision Support Systems ، Ischemic Heart
نویسندگان
Narges Norouzkhani
Department of Medical Informatics, faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Sarvar Moloukzadeh
Department of Nursing, faculty of medicine, Mazandaran University of Medical Sciences, Mashhad, Iran.