Pilot Study of AI-Powered Clinical Decision Support System to Predict Flares in Psoriasis
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 50
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_550
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Psoriasis is a chronic, immune-mediated skin disease characterized by unpredictable flare-ups. Timely prediction of flares can facilitate early interventions and reduce disease burden. This pilot study aimed to develop and evaluate an artificial intelligence (AI)-powered clinical decision support system (CDSS) to predict impending psoriasis flares using routinely collected clinical and patient-reported data. Methods: A retrospective dataset of ۱,۲۰۰ patients with moderate-to-severe plaque psoriasis was extracted from the dermatology clinics of three academic hospitals (۲۰۱۸–۲۰۲۳). Variables included demographics, Psoriasis Area and Severity Index (PASI) scores, comorbidities, treatment regimens, adherence rates, and longitudinal patient-reported outcomes (PROs). Data preprocessing involved imputation of missing values, normalization, and feature engineering, including time-series transformation and lag feature creation. An ensemble AI model combining long short-term memory (LSTM) networks and gradient-boosted decision trees (XGBoost) was trained to classify the likelihood of a flare occurring within the next ۳۰ days. Model performance was assessed using stratified ۵-fold cross-validation. Metrics included accuracy, sensitivity, specificity, F۱-score, and area under the receiver operating characteristic curve (AUC-ROC). Results: The hybrid AI model achieved an AUC-ROC of ۰.۸۷, with sensitivity and specificity of ۸۲.۴% and ۷۹.۱%, respectively. The CDSS interface successfully generated real-time alerts for high-risk patients in a simulated deployment, showing a ۲۰% reduction in predicted flare-related hospital visits during internal validation. Conclusion: This pilot study demonstrates the feasibility and clinical promise of AI-based flare prediction in psoriasis management.
کلیدواژه ها:
نویسندگان
Narges Norouzkhani
Department of Medical Informatics, faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Sarvar Moloukzadeh
Department of Nursing, faculty of medicine, Mazandaran University of Medical Sciences, Mashhad, Iran.