AI Guidelines in Healthcare: A Systematic Review of Reporting Frameworks, Quality Assessment, Clinical Implementation, Ethical Governance, and Technical Standards (۲۰۱۵-۲۰۲۴)

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 24

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_518

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: The growing use of AI in healthcare demands clear, practical guidelines to ensure safety, effectiveness, and ethics. However, existing guidelines vary widely in quality and coverage. This review evaluates AI guidelines across five key areas: reporting, quality, clinical use, ethics, and technical standards, identifying major gaps in the field. Methods: We conducted this systematic review following PRISMA ۲۰۲۰ guidelines, searching PubMed, Web of Science, and IEEE Xplore (۲۰۱۵-۲۰۲۴) using a combination of AI terms ('artificial intelligence,' 'machine learning'), guideline types ('framework,' 'checklist'), and healthcare applications. Two independent reviewers screened ۵,۶۳۲ records, identifying ۹۸ eligible guidelines. Data extraction captured bibliometrics, development characteristics, content attributes, implementation features, and limitations. Quality assessment used modified AGREE-II criteria, with thematic analysis performed across our five-domain framework. Results: Current AI healthcare guidelines show strengths in reporting (CONSORT-AI/TRIPOD-AI, ۸۲% quality) and quality assessment (QUADAS-AI/PROBAST-AI) but face critical gaps: low adoption (۱۹% trials), missing AI-bias evaluation, scarce deployment guidance (despite DECIDE-AI’s ۸۹% score), and weak compliance (۳۲% for FAIR-AI). Ethical frameworks (e.g., WHO) lack actionable tools. Challenges persist in applicability, reproducibility, and environmental/ethical integration. Stakeholder engagement (clinicians/patients) remains undervalued. Conclusion: This review highlights gaps in AI guidelines, particularly in implementation tools and generative AI. Key recommendations: (۱) integrated guidelines for all development stages, (۲) practical toolkits, and (۳) monitoring systems for compliance—essential for safe and equitable AI use in healthcare.

نویسندگان

Najibeh Mohseni MoallemKolaei

PhD Student in Health Information Management, Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran.

Parisa Yousefi Konjdar

PhD Student in Health Information Management, Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran.

Leila Shokrizade Arani

PhD in Health Information Management, Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran.