Decoding Colorectal Cancer: A Bioinformatics-Machine Learning Approach to miRNA Biomarker Discovery

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 28

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_498

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, underscoring the need for early and accurate diagnostic biomarkers. MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have emerged as promising candidates for non-invasive cancer detection. This study aims to identify potential miRNA biomarkers for CRC using an integrated bioinformatics and machine learning approach, with the hypothesis that dysregulated miRNAs can distinguish CRC patients from healthy controls with high accuracy. Methods: The study analyzed the GSE۲۱۱۶۹۲ miRNA expression dataset, applying differential expression analysis to identify significantly dysregulated miRNAs using statistical tools. Pathway enrichment analysis was conducted to explore the biological functions of these miRNAs. A random forest classifier was then trained on miRNA expression profiles to evaluate diagnostic performance based on sensitivity, specificity, and area under the curve (AUC). Results: Differential expression analysis revealed a cohort of dysregulated miRNAs, with hsa-miR-۴۴۸۱ and hsa-miR-۵۱۰۰ showing significant alterations. Pathway enrichment indicated strong involvement in miRNA-mediated mRNA degradation, highlighting their regulatory role in CRC. The random forest model achieved high diagnostic accuracy, supported by a robust AUC, suggesting the potential of these miRNAs as biomarkers. However, further validation is required due to discrepancies in dataset availability. Conclusion: This study demonstrates the utility of combining bioinformatics and machine learning to identify miRNA biomarkers for CRC. The findings suggest that specific miRNAs, if experimentally validated, could facilitate early detection and personalized treatment strategies. Future research should focus on validating these miRNAs in independent patient cohorts and expanding the model’s applicability to diverse populations.

کلیدواژه ها:

نویسندگان

Seyed Mohammadreza Alavi

Faculty of Pharmacy and student research committee, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.

Ali Emami

Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.

Omid Ebrahimpour

Faculty of Pharmacy, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran

Mosayeb Akbari

Faculty of Pharmacy, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran