Harnessing Machine Learning and Artificial Intelligence to Predict Maternal and Neonatal Health Outcomes
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 24
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_451
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: As global initiatives to enhance maternal and neonatal health gain momentum, the integration of machine learning (ML) and artificial intelligence (AI) into clinical practice emerges as a pivotal advancement. This review synthesizes recent findings on the application of ML and AI in predicting maternal health outcomes, such as postpartum hemorrhage (PPH), perinatal depression (PND), and intrahepatic cholestasis of pregnancy (ICP), while also addressing their role in predicting neonatal mortality. Background: Postpartum complications, including hemorrhage and mental health disorders, pose significant challenges to maternal and neonatal well-being. Accurate early prediction is essential for timely intervention. PPH remains a leading cause of maternal morbidity and mortality globally, especially in low-resource settings. This review evaluates the effectiveness of various ML algorithms in predicting critical maternal health outcomes and analyzes recent advancements in AI-driven mortality prediction models for both mothers and neonates. Methods: A systematic literature search across five major scientific databases yielded ۶۷۱ publications from the past decade. After screening, ۱۸ studies were selected for in-depth analysis, focusing on methodologies and features of ML models, particularly Random Forest, in predicting PPH and neonatal mortality. Results: Postpartum Hemorrhage (PPH): ML models showed a ۹۵% higher likelihood of predicting PPH compared to traditional methods. Random Forest algorithms achieved the highest accuracy with a mean absolute error of ۲۱.۷. Key predictors included maternal age, gestational week, and cesarean delivery history. - Perinatal Depression (PND): The predictive model identified at-risk women based on mood status, previous depressive episodes, and sleep quality, demonstrating strong performance. - Intrahepatic Cholestasis of Pregnancy (ICP): The CatBoost model achieved an AUC of ۰.۹۶۱۴, indicating excellent predictive capability for ICP severity. - Neonatal Outcomes: Key predictors for neonatal mortality included birth weight, gestational age, Apgar score, and gender. AI models enhanced risk assessment and facilitated early interventions. Conclusion: Machine learning and artificial intelligence have significant potential in predicting maternal and neonatal health outcomes. Integrating these techniques into clinical practice can enhance detection and interventions. Further research is essential for optimizing resources in this field.
کلیدواژه ها:
نویسندگان
Fatemeh Zarei
Department of Midwifery, Faculty of Nursing and Midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Zohre Ghaem Maghami
Department of Midwifery, Faculty of Nursing and Midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran