Design of an Intelligent AI-Based System for Mental Health Assessment of Pre-Hospital Emergency Personnel Using Mission Report Analysis
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 86
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_373
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Pre-hospital emergency personnel face significant psychological stress due to the high-pressure nature of their work, increasing risks of burnout and mental health challenges. This study aims to design an intelligent artificial intelligence-based system to assess the mental health of emergency personnel by analyzing mission reports, hypothesizing that early detection of stress patterns can enhance support and reduce burnout. Methods: The proposed system employs natural language processing and deep learning algorithms, specifically Transformer models, to analyze textual data from mission reports. These reports include personnel descriptions of events, reported symptoms, and actions taken. The system extracts key phrases (e.g., “severe pressure,” “critical incident”) and identifies recurring patterns, such as frequent high-stress missions within short timeframes. Data from a sample of anonymized mission reports were processed, with privacy ensured through encryption and restricted access. The system's accuracy in estimating stress or burnout levels exceeds ۸۵%. Results: Preliminary findings indicate the system detects burnout trends up to ۶۵% earlier than traditional methods, reducing analysis time to minutes per dataset. It generates analytical reports (e.g., “increased stress indicators over the past ۳۰ days”) for managers and personnel. Challenges include incomplete reports, varying writing styles, and the need for standardized data, which slightly affect performance. Conclusion: This artificial intelligence-driven system offers a proactive approach to monitoring mental health, enabling better shift planning and reducing absenteeism among pre-hospital emergency personnel. Its integration with human resource systems and provision of personalized stress-reduction recommendations represent future potential. By improving mental well-being, the system enhances the efficiency of emergency services and prevents occupational burnout, suggesting a scalable model for other high-stress professions.
کلیدواژه ها:
نویسندگان
Hossein Jouya
Emergency Education Expert, Fars Emergency Medical Services, Shiraz University of Medical Sciences, Shiraz, Iran
Hossein Moein Jahromi
Nursing Office Expert, Shahid Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Entrepreneurship Management Student, Faculty of Management and Economics, University of Sistan and Baluchestan, Zahedan, Iran