Design and Implementation of an Intelligent System Based on Artificial Intelligence and Machine Learning for Arrhythmia Detection in Pre-Hospital Emergencies Using a Mobile Application

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 41

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_369

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Cardiac arrhythmias, potentially life-threatening disturbances in heart rhythm, represent a critical challenge in pre-hospital emergency care, where rapid and accurate detection is essential. This study aims to design and implement an intelligent system based on artificial intelligence and machine learning to automatically detect arrhythmias using images captured by mobile phone cameras. The goal is to enhance emergency medical response outside of hospital settings, especially in underserved areas. Methods: The proposed system employs a mobile application that uses advanced image processing algorithms and deep learning models, particularly convolutional neural networks (CNNs), trained on a large dataset of ECG images. Users capture photos of paper-based ECG printouts or monitor displays with their mobile cameras. These images are then processed locally on the device to identify various arrhythmia types such as atrial fibrillation or ventricular tachycardia. The application also supports multilingual output and geolocation sharing for emergency communication. Results: Initial evaluations demonstrate a detection accuracy exceeding ۹۵% for multiple arrhythmia types. The system reduces diagnosis time significantly—by up to ۷۰% compared to traditional methods—crucial in time-sensitive emergency situations. Furthermore, non-medical users achieved an ۸۵% satisfaction rate in usability tests, indicating the system's potential for widespread community use. Conclusion: This intelligent, mobile-based arrhythmia detection system offers an innovative and scalable solution for pre-hospital emergency care. By leveraging AI technologies and ubiquitous smartphone cameras, it empowers both laypersons and responders to identify life-threatening conditions promptly. Challenges such as poor image quality under low lighting, smartphone processing limitations, and data privacy are acknowledged and addressed through encryption and blockchain-based solutions. Future work includes integration with telemedicine platforms and expansion to other cardiac-related visual diagnostics.

نویسندگان

Hossein Jouya

Emergency Education Expert, Fars Emergency Medical Services, Shiraz University of Medical Sciences, Shiraz, Iran

Hossein Moein Jahromi

Nursing Office Expert, Shahid Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Entrepreneurship Management Student, Faculty of Management and Economics, University of Sistan and Baluchestan, Zahedan, Iran