Large Language Models in Healthcare: Innovations, Challenges, and Future Prospects

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 99

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_358

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: The rapid advancements in Natural Language Processing (NLP) and Large Language Models (LLMs) have significantly impacted various industries, with healthcare being one of the most promising domains. LLMs, such as BERT and GPT, have revolutionized medical informatics by enhancing clinical decision-making, biomedical research, and drug discovery. This study aims to explore the development, applications, challenges, and future prospects of LLMs in healthcare. Methods: A comprehensive review of literature from ۲۰۱۵ to ۲۰۲۴ was conducted, analyzing studies related to the implementation of LLMs in healthcare. The review covers the evolution of language models, their architectures, and their applications in clinical diagnosis, medical decision support, drug discovery, and pandemic management. Additionally, the limitations and ethical concerns associated with LLMs in medical practice were examined. Results: Findings indicate that LLMs have significantly contributed to improving diagnostic accuracy, streamlining clinical workflows, and accelerating biomedical research. However, challenges such as data biases, hallucinations, and the need for domain-specific expertise remain significant barriers to widespread adoption. Ethical concerns, including patient data privacy and model transparency, also require careful consideration. Conclusion: Despite their transformative potential, the integration of LLMs into healthcare demands rigorous validation, ethical oversight, and continuous refinement. Future research should focus on developing specialized medical LLMs, mitigating biases, and establishing robust regulatory frameworks to ensure their safe and effective use in clinical settings.

نویسندگان

Amin Rezanejad

Computer Engineering Department, University of Guilan, Rasht, Iran.

Ali Heydari

Computer Engineering Department, University of Guilan, Rasht, Iran.

Aida Hafsi Kordestani

Computer Engineering Department, University of Guilan, Rasht, Iran.

Amir Seyed Danesh

Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran.