A Deep Learning Approach for Classifying Skin Lesions Across Fitzpatrick Skin Types

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 43

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_349

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: The accurate diagnosis of skin lesions using artificial intelligence remains challenging due to the diversity of skin types and imbalances in datasets. This study utilizes the Fitzpatrick۱۷k dataset, a collection of dermatological images annotated with Fitzpatrick skin types (I to VI), to improve classification performance across diverse skin tones. The primary aim is to evaluate the model’s accuracy across different skin types and address dataset bias using advanced deep learning techniques. Methods: A deep neural network was trained to classify skin lesions at three levels of granularity (۳-class, ۹-class, and ۱۱۴-class problems). The dataset includes clinical images labeled with both disease class and Fitzpatrick skin type. Additionally, Faster R-CNN was employed for lesion detection, followed by ResNet for classification. A debiasing approach based on variational autoencoders was used to mitigate dataset bias in deep neural networks, ensuring fairer model predictions across all skin tones. Results: The model achieved overall accuracies of ۸۵.۵۳% (۳-class), ۸۱.۴۵% (۹-class), and ۶۳.۸۴% (۱۱۴-class). Performance analysis revealed significant disparities, with higher accuracy for lighter skin tones (types I-IV) compared to darker skin tones (types V-VI). For the ۱۱۴-class classification task, the model achieved a precision of ۷۰%, recall of ۶۴%, and an F۱-score of ۶۴%. These results indicate notable improvements compared to previous studies, which reported accuracies of ۶۲.۴۰%, ۳۶.۱۰%, and ۲۶.۷% for the respective classification levels. Conclusion: The findings highlight the need for more diverse datasets to enhance AI-driven dermatological diagnosis, particularly for underrepresented skin tones. Integrating external datasets with greater diversity and employing debiasing techniques can improve model generalization and fairness. Future work should explore more robust dataset augmentation strategies and domain adaptation techniques to mitigate existing biases and optimize classification performance across all skin types.

نویسندگان

Laleh Armi

Department of Computer and Electrical Engineering, The University of Kashan, Kashan, I.R. Iran

Zahra Esmaily

Department of Computer and Electrical Engineering, The University of Kashan, Kashan, I.R. Iran

Hossein Ebrahimpour-Komleh

Department of Computer and Electrical Engineering, The University of Kashan, Kashan, I.R. Iran