Application of Artificial Intelligence in Endoscopy
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 18
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_236
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Artificial intelligence (AI), particularly deep learning, has revolutionized the landscape of diagnostic medicine. In recent years, its applications in gastrointestinal (GI) endoscopy have shown promising results in improving the detection, classification, and prediction of GI lesions. This review aimed to evaluate the current state and diagnostic potential of AI-based systems in GI endoscopy, including upper GI endoscopy, colonoscopy, and capsule endoscopy. Methods: A narrative review was conducted in October ۲۰۲۴. Relevant literature was searched in PubMed/MEDLINE and Scopus databases using keyword combinations such as “artificial intelligence,” “endoscopy,” “gastrointestinal tract,” “esophagus,” “stomach,” and “intestines.” A total of ۱۷۵ English-language original research articles published between ۲۰۱۸ and ۲۰۲۴ were identified. Only studies that implemented AI models within GI endoscopic procedures were included. Two independent reviewers assessed all retrieved articles using EndNote software and evaluated titles, abstracts, methodologies, and outcomes. Final data were documented using a standardized review checklist. Results: Among the ۱۷۵ selected articles, ۷۵ focused on colonoscopy, ۳۷ on gastric endoscopy, ۳۸ on esophageal endoscopy, and ۲۵ on capsule endoscopy. AI applications in upper GI endoscopy involved detection of early-stage cancers, prediction of histopathologic diagnosis, assessment of tumor invasion depth, and identification of Helicobacter pylori infection. In capsule endoscopy, AI models were capable of detecting gastrointestinal bleeding, ulcers, tumors, and small intestinal diseases with high accuracy. Studies consistently reported improved diagnostic performance and reduced interpretation time. Conclusion: AI is rapidly transforming GI endoscopy by enhancing diagnostic accuracy, reducing observer variability, and optimizing workflow efficiency. Despite these advantages, AI should complement—not replace—clinical judgment. Further large-scale clinical trials are essential to assess real-world effectiveness and ensure responsible integration into endoscopic practice.
کلیدواژه ها:
نویسندگان
Zahra Mousavyan
student research committee mazandaran university of medical sciences sari iran