Application of artificial intelligence in electronic health record (EHR) in Iran

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 60

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_189

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Electronic Health Record (EHR) data holds immense potential for improving healthcare, but its volume and complexity pose analytical challenges. Traditional methods are inadequate for processing EHR data due to computational limitations and the inability to recognize complex patterns. Artificial Intelligence (AI) offers solutions through its capabilities in big data analysis, pattern recognition, machine learning, and prediction.This article reviews AI applications in EHRs, providing an updated perspective on how AI can enhance EHR performance and patient care, including relevant statistics and figures. Methods: The review covers basic concepts of EHRs and AI. It analyzes case studies and scientific articles related to AI applications in EHRs, using data from sources like PubMed, Scopus, Web of Science, WHO, and the FDA. Results: AI significantly improves EHR performance by enabling advanced algorithms and big data analysis. Specific applications include: Early Disease Diagnosis: AI can identify hidden disease patterns, enabling earlier diagnoses (e.g., lung cancer diagnosis up to ۳ months earlier). Patient Status Prediction: AI predicts patient outcomes to aid treatment decisions (e.g., ۸۵% accuracy in predicting heart patient readmission). Personalized Treatments:AI recommends tailored treatments based on individual data (e.g., personalized cancer drugs based on genetic information). Reduced Medical Errors: AI identifies and prevents medical errors (e.g., medication errors reduced by up to ۵۰%). Improved Medication Management: AI prevents drug interactions. Increased Healthcare System Efficiency: AI automates tasks (e.g, patient queue management, bed allocation). Conclusion: AI is increasingly important in EHRs, enhancing their performance and improving patient care. It empowers doctors to make better decisions regarding diagnosis, treatment, and patient care. Challenges include data privacy, the need for interdisciplinary expertise, and implementation costs. Future AI advancements and increased data access are expected to further improve EHR performance and patient services.

کلیدواژه ها:

Healthcare Big Data Analytics ، Digital Health

نویسندگان

Elina Lovineh

Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran‎