Artificial intelligence in determining prognosis, diagnosis and treatment of lung cancer, applications and challenges
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 34
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_149
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Lung cancer is one of the deadliest types of cancer in the world and is often diagnosed at an advanced stage. It accounted for ۱.۸ million deaths in ۲۰۲۰. Given the rapid advances in artificial intelligence and its integration with medical science, in this article, we examine the impact of artificial intelligence (AI) in determining the prognosis, diagnosis, and treatment of lung cancer. Methods: Articles in PubMed, ScienceDirect, and MDPI were searched for full-text access. ۲۷ articles related to AI in the field of lung cancer were reviewed. ۹ articles were excluded due to duplication and lack of appropriate relevance to the topic. This study was based on review and empirical articles between ۲۰۱۹ and ۲۰۲۴. Results: A review of ۱۸ articles showed that various AI algorithms with the ability to analyze more complex data with an accuracy of ۹۲.۸۶% were effective in early detection of lung cancer. Three articles also mentioned challenges of AI such as the risk of over-processing models and the lack of generalizability of data to a larger population. Conclusion: Radiomic analysis is effective in early lung diagnosis by identifying hidden features in CT. AI has shown very effective performance by classifying and diagnosing tumors such as adenocarcinoma with an accuracy of ۰.۸۴ and squamous cell carcinoma with an accuracy of ۰.۷۶. It also provides valuable assistance to physicians in choosing a treatment strategy by integrating clinical and genetic data and blood and CT studies of patients after surgery. However, given the challenges, future studies should be conducted in a larger population.
کلیدواژه ها:
نویسندگان
Negar Mojarad
Boukan Faculty of Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
Aitak Javadi
Boukan Faculty of Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
Arash Ahmadi
Boukan Faculty of Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
Mani Minaei
Boukan Faculty of Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran