Cardiovascular risk patterns through AI-enhanced clustering of longitudinal health data

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 23

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_111

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: A major cause of death worldwide, cardiovascular disease (CVD) is largely caused by risk factors like smoking, high blood pressure, poor diets, and a lack of physical activity. To find clear trends in the dynamics of CVD risk over time, this study used an unsupervised learning approach to examine the relationship between the incidence of CVD in Iranian adults and the longitudinal trajectories of risk factors. Methods: A total of ۱۸۷۲ adults aged ۴۰–۷۹ years, free of atherosclerotic cardiovascular disease (ASCVD) at baseline, were included in the Tehran Lipid and Glucose Study (TLGS). Longitudinal data spanning over ۱۰ years were analyzed using clustering techniques to identify distinct trajectories of CVD risk factors. K-means clustering was applied after standardizing data using the TimeSeriesScalerMeanVariance method, and the optimal number of clusters was determined using silhouette scores. Results: The risk factor trajectories were grouped into four different clusters. Compared to Cluster ۴, which represents the low-risk group, Cluster ۱, which represents the high-risk group, exhibited a significantly higher hazard of CVD events. The high-risk cluster showed a noteworthy ۸۹% incidence of CVD during the first five years of follow-up. The results suggest that risk factor trajectories may better discriminate individuals at risk of CVD. Conclusion: This study highlights the utility of trajectory-based clustering to identify high-risk individuals for CVD more effectively. Regular monitoring and longitudinal assessment of risk factor trajectories may improve the early identification of at-risk individuals and enable targeted prevention strategies to mitigate CVD incidence.

نویسندگان

Maryam Mahdavi

Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Anoshirvan Kazemnejad

Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abbas Asosheh

Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Davood Khalili

Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran