AI-Powered Analysis of Metabolic Risk Factors in Non-CVD Individuals and Their Trajectory Toward Cardiovascular Incidence

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 42

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_110

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Cardiovascular disease (CVD) is the leading global cause of mortality, responsible for ۱۸.۶ million deaths in ۲۰۱۹, with increasing prevalence and incidence. In Iran, CVD accounts for ۴۶.۰۴% of all deaths, with demographic aging and sedentary lifestyles exacerbating the burden. This study evaluates the impact of metabolic risk factors and their trajectories on CVD development in an Iranian cohort. Methods: Based on the Tehran Lipid and Glucose Study (TLGS), this longitudinal study included ۱۸۷۲ adults aged ۴۰–۷۹ years without prior CVD at baseline. Participants were selected through multistage random cluster sampling and followed from ۱۹۹۹ to ۲۰۱۸. Data were collected on demographic, lifestyle, and metabolic factors, with laboratory analyses conducted using standardized protocols. Generalized Estimating Equations (GEE) were used to assess age- and gender-adjusted trajectories of metabolic indicators, while Random Survival Forest (RSF) models evaluated the predictive performance of CVD risk factors. Harrell’s C-index and residual analysis compared the full and reduced RSF models. Results: During a ۱۰-year follow-up, ۱۱۷ participants (۶.۳%) developed CVD. Baseline CVD converters exhibited higher age, weight, blood pressure, fasting glucose, lipid levels, and diabetes prevalence. Key metabolic risk factor trajectories included TyG Index, FPG, and SBP, which had significant increases ۶ years before diagnosis. RSF model performance was robust, with C-index values of ۰.۹۵ (full model) and ۰.۹۲ (reduced model), and a Pearson correlation of ۰.۸۰ between model predictions. Residual analysis showed slight variability but strong overall alignment between models. Conclusion: Longitudinal trajectories of metabolic risk factors, particularly SBP, FPG, and TyG index, demonstrated strong predictive value for CVD development years before onset, with SBP emerging as the most potent predictor. These findings emphasize the importance of early detection and preventive strategies targeting metabolic risk factors. Lifestyle modifications can significantly mitigate CVD risk, underscoring the utility of longitudinal data in understanding risk factor heterogeneity and disease progression.

نویسندگان

Maryam Mahdavi

Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Anoshirvan Kazemnejad

Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abbas Asosheh

Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Davood Khalili

Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran