Assessing Convolutional Neural Networks (CNN) Models in Diabetic Retinopathy Diagnosis: Systematic Review
محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 30
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS02_087
تاریخ نمایه سازی: 29 تیر 1404
چکیده مقاله:
Background and Aims: Diabetic retinopathy (DR) is the leading cause of blindness among adults, highlighting its critical public health impact. Early diagnosis is essential but challenging due to the reliance on time-consuming analyses by experienced clinicians. Artificial intelligence especially through convolutional neural networks (CNNs), shows significant promise in enhancing DR diagnosis. CNNs can efficiently and accurately analyze retinal images, often matching human expert capabilities. This study aimed to evaluate a CNN model for diagnosing DR. Methods: This systematic review was conducted with PRISMA guidelines for the evaluation of studies using convolutional neural networks (CNN) for the diagnosis of diabetic retinopathy (DR). The review included original research articles published in English up to ۲۰۲۴, data sources including PubMed and Web of Science using keywords such as 'CNN', 'diagnosis' and 'diabetic retinopathy'. Key features extracted from the articles included CNN types, input features (e.g fundus images and OCT), methodology, evaluation criteria (e.g, accuracy and sensitivity), results, limitations and sample size. The aim of this analysis was to identify trends in methodology and performance measures, highlighting improvements in DR diagnostic accuracy using CNN. Results: Out of ۵۶۰ extracted articles, ۵۸ met the eligibility criteria for inclusion in the study, focusing on the performance of Convolutional Neural Networks (CNNs) in detecting diabetic retinopathy (DR). Most studies primarily analyzed samples from individuals with Type ۲ diabetes, which made up ۵۶% of the samples. For DR detection, the most commonly used images were Optical Coherence Tomography (OCT), MRI, and fundus images, with fundus images constituting the largest portion at ۴۰%. The significant CNN models included ResNet variants (۲۰% of studies), followed by VGGNet and AlexNet (each ۱۵%). The evaluation metrics showed strong CNN performance in identifying diabetic retinopathy, with an average accuracy of ۹۲.۵%, specificity and sensitivity of ۹۴.۵%, and an average AUC of ۰.۹۶۱. Conclusion: This article demonstrates the effectiveness of Convolutional Neural Networks (CNNs) in detecting DR. The findings suggest that integrating various imaging modalities and advanced AI techniques can significantly enhance diagnostic accuracy, leading to better patient outcomes in diabetic retinopathy management. Future research should focus on further optimizing these models to
کلیدواژه ها:
نویسندگان
Nafiseh Jamal
PhD Student, Department of Health Information Technology and Management, Kashan, Iran
Leila Shokrizadeh Arani
PhD in Health Information Management, Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran