Application of Traditional Machine Learning Algorithms in Predicting Bone Metastasis in Prostate Cancer Patients: A Systematic Review and Meta-Analysis

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 113

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_073

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Traditional machine learning algorithms have been widely used to predict bone metastasis in prostate cancer patients, providing valuable support for medical decision-making and treatment planning. This systematic review aims to evaluate their performance in this context. Methods: A comprehensive search of PubMed, Cochrane Library, and Scopus databases was conducted by two independent reviewers to identify studies investigating traditional machine learning algorithms for bone metastasis prediction in prostate cancer. Four studies that met the inclusion criteria were selected. The methodological quality of these studies was assessed using the PROBAST tool. Results: Among the selected studies, key clinical features for predicting bone metastasis included Tumor stage, Total Prostate-Specific Antigen level and Gleason score. The most commonly used algorithms were Random Forest, Logistic Regression and eXtreme Gradient Boosting. Meta-analysis results revealed that the eXtreme Gradient Boosting model outperformed others, with an Area under the curve (AUC) of ۹۵.۴۳۴% (۹۵% CI: ۹۵.۴۳۰%–۹۵.۴۴۰%), accuracy of ۸۸.۰۶۵% (۹۵% CI: ۸۸.۰۶۱%–۸۸.۰۷۰%) and sensitivity of ۹۰.۴۱۹% (۹۵% CI: ۹۰.۴۱۰%–۹۰.۴۳۰%). Conclusion: Traditional machine learning algorithms, especially the eXtreme Gradient Boosting model, can play a potential role in predicting bone metastasis in prostate cancer patients. These models can support clinical decision-making, but further refinement of study design and broader evaluation are necessary to enhance their reliability and accuracy.

نویسندگان

Alireza Gholamnezhad Amichi

Student Research Committee, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran

Farzaneh Faraji Shahrivar

Department of Physiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran

Farzam Mahmoodi

Assistant Professor of urology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran

Mohammad Javad Manteghi

Assistant Professor of Nephrology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran