Application of Multi-Criteria AI-Based Modeling in Predicting and Assessing Fire Safety in Healthcare Facilities

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 50

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_068

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Fire safety in healthcare facilities is of paramount importance due to the limited evacuation capabilities of occupants in these centers. Consequently, inadequate fire safety precautions result in increased fatalities and financial losses. This research introduces an integrated model to predict and assess fire safety for occupants within these buildings. Methods: To achieve this, ۳۱۵ fire scenarios were simulated to determine the fire safety level through emergency evacuation modeling (using PathFinder software) and fire and smoke spread modeling (using PyroSim software). In each scenario, ۱۳ features, including fire load density, occupancy, and building characteristics, were selected as model inputs to predict fire safety and evacuation risk. Results: Among the AI-based techniques examined, the MLP-PSO (۵۰۰ iterations) method demonstrated the best performance for predicting the fire safety level of hospital occupants, with an RMSE (Total data) of ۰.۰۷۸, an R² (Total data) of ۰.۹۹, and an SD (Total data) of ۱.۴۶. When compared to the FRAME approach, the results of the MLP-PSO model exhibited a significant correlation in fire safety predictions with respect to the Fire Risk Assessment Method for Engineering (FRAME). Conclusion: Hospital administrators can enhance emergency preparedness and mitigate fire risks with the aid of this precise approach. The integration of simulation and machine learning provides a more comprehensive and accurate assessment and prediction of fire safety, ultimately contributing to safer healthcare buildings.

کلیدواژه ها:

نویسندگان

Samaneh Salari

Ph.D. candidate, Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Mehdi Ghasri

Ph.D. student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran.

Ali Karimi

Professor, Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.