Application of artificial intelligence in screening and diagnosis of diabetic macular edema

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 26

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_049

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Diabetic macular edema (DME) is a leading cause of vision impairment, necessitating efficient screening and diagnosis. This review explores the application of artificial intelligence (AI) techniques in DME screening, diagnosis, and classification using retinal imaging modalities. Methods: We searched six databases (PubMed, Scopus, Web of Science, Science Direct, IEEE, and ACM) from January ۱, ۲۰۰۵, to July ۴, ۲۰۲۱, retrieving ۸۷۹ articles. After applying inclusion/exclusion criteria, ۳۸ studies were selected. Methodological quality was assessed using the QUADAS-۲ tool. Results: AI techniques, particularly deep learning, demonstrate high accuracy in DME screening and diagnosis using optical coherence tomography (OCT) and color fundus photography (CFP). These methods significantly improve sensitivity and specificity, with AI-based decision support systems enhancing diagnostic performance. Conclusion: Deep learning models offer an efficient and accurate approach to DME screening and diagnosis. Integrating AI into retinal image analysis improves diagnostic reliability, supporting early detection and management.

کلیدواژه ها:

نویسندگان

Mohammad Hasan Shahriari

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Farkhondeh Asadi

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Azamosadat Hosseini

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Hamideh Sabbaghi

Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Zahra Khorrami

Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran