Optimizing Waste Foundry Sand in Concrete Considering Strength Properties for Sustainable Green Structures

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 10

فایل این مقاله در 46 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-11-6_023

تاریخ نمایه سازی: 28 تیر 1404

چکیده مقاله:

Incorporating waste foundry sand (WFS) into concrete is a sustainable approach to enhance green construction practices. Waste foundry sand is a byproduct of the metal casting industry and is often discarded in landfills, posing environmental concerns. Using it as a partial replacement for natural sand in concrete addresses both waste management and resource conservation. In this research paper, advanced machine learning models have been reported on the soft computing of the optimal waste foundry sand in concrete based on strength properties for sustainable green structures. The machine learning techniques such as “Group Methods Data Handling Neural Network (GMDH-NN)”, “Support Vector Machine (SVM)”, “K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest (RF)” were applied on a database for the compressive strength containing ۳۹۷ records, for elastic modulus containing ۱۴۶ records, and for split tensile strength containing ۲۴۲ records. Each record contains C-Cement content (kg/m³), WFS-Waste foundry sand content (kg/m³), W-Water content (kg/m³), SP-Super-plasticizer content (kg/m³), CA-Coarse aggregates content (kg/m³), FA-Fine aggregates content (kg/m³), TA-Total aggregates content (kg/m³), and Age-The concrete age at testing (days), considered as the input parameters and CS_WFS-Compressive strength of waste foundry sand concrete (MPa), E_WFS-Elastic modules of waste foundry sand concrete (GPa), and STS_WFS-Split tensile strength of waste foundry sand concrete (MPa), which are the output parameters. A ۷۵/۲۵ partitioning pattern for train/test of the database was used in line with established rules. At the end of the model operation, it can be observed that kNN, SVM, and RF were paramount in terms of performance and therefore outclassed the other models in the three-state strength condition of the WFS cement concrete. Hence, these were selected as the decisive models for the prediction of the compressive strength, elastic modulus, and splitting tensile strength of the WFS cement's concrete. The sensitivity analyses showed that Age, WFS/C and CA/C are more impactful on the compressive strength, Age, FA/TA, and W/C are more impactful on the elastic modulus; and ۱۰۰۰SP/C, WFS/C, and W/C are more impactful on the splitting tensile strength of the WFS cement concrete. Generally, these models provide a foundation for optimizing material use, ensuring quality, and meeting environmental goals. Industries leveraging these tools can produce eco-friendly, high-performance concrete while addressing waste management challenges and reducing their carbon footprint.Incorporating waste foundry sand (WFS) into concrete is a sustainable approach to enhance green construction practices. Waste foundry sand is a byproduct of the metal casting industry and is often discarded in landfills, posing environmental concerns. Using it as a partial replacement for natural sand in concrete addresses both waste management and resource conservation. In this research paper, advanced machine learning models have been reported on the soft computing of the optimal waste foundry sand in concrete based on strength properties for sustainable green structures. The machine learning techniques such as “Group Methods Data Handling Neural Network (GMDH-NN)”, “Support Vector Machine (SVM)”, “K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest (RF)” were applied on a database for the compressive strength containing ۳۹۷ records, for elastic modulus containing ۱۴۶ records, and for split tensile strength containing ۲۴۲ records. Each record contains C-Cement content (kg/m³), WFS-Waste foundry sand content (kg/m³), W-Water content (kg/m³), SP-Super-plasticizer content (kg/m³), CA-Coarse aggregates content (kg/m³), FA-Fine aggregates content (kg/m³), TA-Total aggregates content (kg/m³), and Age-The concrete age at testing (days), considered as the input parameters and CS_WFS-Compressive strength of waste foundry sand concrete (MPa), E_WFS-Elastic modules of waste foundry sand concrete (GPa), and STS_WFS-Split tensile strength of waste foundry sand concrete (MPa), which are the output parameters. A ۷۵/۲۵ partitioning pattern for train/test of the database was used in line with established rules. At the end of the model operation, it can be observed that kNN, SVM, and RF were paramount in terms of performance and therefore outclassed the other models in the three-state strength condition of the WFS cement concrete. Hence, these were selected as the decisive models for the prediction of the compressive strength, elastic modulus, and splitting tensile strength of the WFS cement's concrete. The sensitivity analyses showed that Age, WFS/C and CA/C are more impactful on the compressive strength, Age, FA/TA, and W/C are more impactful on the elastic modulus; and ۱۰۰۰SP/C, WFS/C, and W/C are more impactful on the splitting tensile strength of the WFS cement concrete. Generally, these models provide a foundation for optimizing material use, ensuring quality, and meeting environmental goals. Industries leveraging these tools can produce eco-friendly, high-performance concrete while addressing waste management challenges and reducing their carbon footprint.

کلیدواژه ها:

Sustainable Green Structures Waste Foundry Sand Concrete Strength Machine Learning

نویسندگان

Néstor Ulloa

۱) Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba ۰۶۰۱۵۵, Ecuador. ۲) Grupo de Investigación y Desarrollo de Nanotecnología, Materiales y Manufactura (GIDENM), Escuela Superior Politécnica de Chimborazo, ESPOCH, Riobamba, Ecuador

Kerly Mishell Vaca Vallejo

Dipartimento Di Ingegneria Informatica, Modellistica, Elettronica E Sistemistica-DIMES, University of Calabria, Rende, ۸۷۰۳۶, Italy

Ana Marí­a Bucheli Campaña

Escuela Superior Politécnica de Chimborazo (ESPOCH), Sede Orellana, El Coca ۲۲۰۱۵۰, Ecuador

Mery Mendoza Castillo

Escuela Superior Politécnica de Chimborazo (ESPOCH), Sede Orellana, El Coca ۲۲۰۱۵۰, Ecuador

Byron Gabriel Vaca Vallejo

Facultad de Informática y Electrónica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, ۰۶۰۱۵۵, Ecuador

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • [1] Ahmadi, A. A., Arabbeiki, M., Ali, H. M., Goodarzi, ...
  • [2] Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, ...
  • [3] Kurt, Z., Yilmaz, Y., Cakmak, T., & Ustabaş, I. ...
  • [4] Lee, C. Y., Shon, J. G., & Park, J. ...
  • [5] Raut, S. P., Ralegaonkar, R. V., & Mandavgane, S. ...
  • [6] Khan, M. I., & Siddique, R. (2011). Utilization of ...
  • [7] Hemalatha, T., & Ramaswamy, A. (2017). A review on ...
  • [8] Behnood, A., Behnood, V., Modiri Gharehveran, M., & Alyamac, ...
  • [9] Thomas, B. S. (2018). Green concrete partially comprised of ...
  • [10] Özbay, E., Erdemir, M., & Durmuş, H. I. (2016). ...
  • [11] Javed, M. F., Khan, M., Fawad, M., Alabduljabbar, H., ...
  • [12] Shah, M. I., Amin, M. N., Khan, K., Niazi, ...
  • [13] Behnood, A., & Mohammadi Golafshani, E. (2021). Predicting the ...
  • [14] Iqbal, M. F., Javed, M. F., Rauf, M., Azim, ...
  • [15] Ghanizadeh, A. R., Tavana Amlashi, A., & Dessouky, S. ...
  • [16] Ali, M., Khan, M. I., Masood, F., Alsulami, B. ...
  • [17] Lahoti, M., Narang, P., Tan, K. H., & Yang, ...
  • [18] Alyousef, R., Nassar, R. U. D., Khan, M., Arif, ...
  • [19] Musolf, A. M., Holzinger, E. R., Malley, J. D., ...
  • [20] Ulloa, N., Zumba Novay, E. G., Albuja, M., & ...
  • [21] Saridemir, M. (2009). Prediction of compressive strength of concretes ...
  • [22] Sharifi, Y., & Hosseinpour, M. (2020). A predictive model ...
  • [23] Zou, Z. M., Chang, D. H., Liu, H., & ...
  • [24] Ebid, A. E., Deifalla, A. F., & Onyelowe, K. ...
  • [25] Hoffman, F. O., & Gardner, R. H. (1983). Evaluation ...
  • [26] Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. ...
  • [27] Onyelowe, K. C., Ebid, A. M., Riofrio, A., Soleymani, ...
  • [28] Abdalla, A., & Mohammed, A. S. (2022). Hybrid MARS-, ...
  • [29] Ulloa, N., Morales León, M. A., Silva Palmay, L. ...
  • نمایش کامل مراجع