Deep Learning Models for Crack Detection in RC Beams Using Thermal and Visual Imaging
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 35
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MEMARCONF05_022
تاریخ نمایه سازی: 26 تیر 1404
چکیده مقاله:
This study investigates the effectiveness of deep learning models in detecting cracks in reinforced concrete (RC) beams using both thermal and visual imaging. A custom dataset comprising over ۲,۰۰۰ images, including high-resolution RGB and thermal infrared captures of RC beams under progressive loading, was developed under controlled laboratory conditions. Three convolutional neural network (CNN) architectures—ResNet۵۰, EfficientNetB۰, and a hybrid fusion model—were trained and evaluated to classify and localize crack patterns. Data preprocessing included thermal-to-RGB alignment, contrast enhancement, and image augmentation techniques to improve model robustness. The fusion-based model, integrating features from both modalities, outperformed single-input networks, achieving an average crack detection accuracy of ۹۴.۳%, with precision and recall values exceeding ۹۲%. Results highlight the complementary strengths of visual and thermal data, particularly in early crack detection under low-light or visually obstructed conditions. The proposed framework demonstrates strong potential for real-time, non-contact structural health monitoring of RC structures using AI-enhanced vision systems.
کلیدواژه ها:
نویسندگان
Shahram Bagheri Marani
Ph.D. in Environmental Management, Faculty of Agriculture, Water, Food, and Functional Products, Islamic Azad University, Science and Research Branch, Tehran, Iran