A New Approach to Feature Extraction Based on Lung CT Images Using Machine Learning Algorithms for Lung Disease Classification
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 64
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-1-2_005
تاریخ نمایه سازی: 23 تیر 1404
چکیده مقاله:
Accurate diagnosis of lung diseases based on processing and analyzing lung CT images is crucial for aiding medical decision-making. This study presents a new feature extraction method based on human tissue density patterns, called Analysis of Human Tissue Density (AHTD). This method is compared with the Gray Level Co-occurrence Matrix (GLCM), Hu Moments (HM), Statistical Moments (SM), and Zernike Moments (ZM). The dataset of chest tomography images was obtained from the Walter Cantidio University Hospital in Fortaleza, Brazil. Four machine learning classifiers were used in this study: Bayesian Classifier, Optimum-Path Forest (OPF), k-Nearest Neighbors (KNN), and Support Vector Machine (SVM) to classify lung diseases in chest images. Feature extraction from lung images was performed in ۵.۲ milliseconds, achieving an accuracy of ۹۹.۰۱% for lung disease diagnosis and classification. The results of this study suggest that the proposed method can be used in real-time applications due to its rapid processing time and high accuracy for classifying lung diseases based on lung CT images.
کلیدواژه ها:
Human Tissue Density Analysis ، Gray Level Co-occurrence Matrix ، Lung Disease ، Moments ، Machine Learning ، Feature Extraction ، Support Vector Machine ، Optimum-Path Forest
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :