Breast Cancer Diagnosis Using Scattering Wavelet Transform and Hierarchical Multilayer Perceptron Neural Network
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 51
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-2-4_002
تاریخ نمایه سازی: 23 تیر 1404
چکیده مقاله:
Breast cancer has been one of the leading causes of mortality among women in the past decade. Although this type of cancer cannot be prevented due to the unknown nature of its primary causes, early diagnosis can significantly improve a patient's chances of full recovery. Mammography is a well-established tool that aids in the early detection of this disease. Various studies have been conducted to develop breast cancer detection methods; however, these efforts have often failed to achieve sufficient accuracy due to the lack of an effective feature extraction method capable of capturing essential texture characteristics and the absence of a robust classifier. In this study, scattering wavelet transform is employed to extract texture-based features from medical images. The use of multiple features increases the dimensionality of input data for the classifier, necessitating an effective dimensionality reduction approach. To address this, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have been applied. Finally, a hierarchical multilayer perceptron (MLP) neural network is utilized as the classifier for cancer detection. To evaluate the proposed method, the Mini-MIAS dataset has been used, achieving an accuracy of ۹۷.۵۷%.
کلیدواژه ها:
breast cancer ، Scattering Wavelet Transform ، Principal component analysis (PCA) ، Linear Discriminant Analysis (LDA) ، Hierarchical Classification
نویسندگان
M.
Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
N.
Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
S.
Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :