Automatic Car Parking Based on Petri Net, PFA Algorithm, and Fuzzy System

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 50

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TMCH-3-2_002

تاریخ نمایه سازی: 23 تیر 1404

چکیده مقاله:

This paper presents the design and implementation of a hybrid intelligent system aimed at optimizing vehicle parking through efficient path planning. With the increasing demand for intelligent transportation systems, optimizing parking spaces and vehicle movement within parking areas has become a crucial research focus. The proposed system integrates multiple computational techniques to enhance the accuracy and efficiency of automatic parking. The Path Finding Algorithm (PFA) is employed to identify potential parking locations based on predefined constraints and real-time data. Unlike conventional approaches that rely on static flowcharts for parking path planning, this study utilizes Petri nets, which offer a more dynamic and structured framework for modeling alternative parking paths, particularly in global coordinate systems. This method enables adaptive and flexible decision-making in response to varying parking scenarios. To ensure precise maneuverability along the optimized path, a fuzzy logic control system is implemented, allowing the vehicle to adapt its movements in real time based on environmental factors and space constraints. The effectiveness of the proposed system is validated through numerical simulations and experimental studies, demonstrating its capability to improve both parking efficiency and vehicle positioning accuracy. Results indicate that the hybrid integration of PFA, Petri nets, and fuzzy logic significantly enhances the automation and optimization of the vehicle parking process, offering a robust, adaptive, and intelligent parking solution for modern transportation systems.

نویسندگان

A. M.

Department of Electrical Engineering, Technical and Vocational University, Tehran, Iran

A.

Department of Electrical Engineering, Technical and Vocational University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Millard-Ball, A. (۲۰۱۹). The autonomous vehicle parking problem. Transport Policy, ...
  • Thomas, D., & Kovoor, B. C. (۲۰۱۸). A genetic algorithm ...
  • Klemm, S., Essinger, M., Oberländer, J., Zofka, M. R., Kuhnt, ...
  • نمایش کامل مراجع