Introduction of an Optimal Portfolio Recommendation System Using Quantum Potential

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 34

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TMCH-3-2_005

تاریخ نمایه سازی: 23 تیر 1404

چکیده مقاله:

In today's world, with the evolution of science and technology and the increasing complexity of human life, the vast and growing volume of information in various fields has made the decision-making process to achieve the desired goal very challenging. To address this challenge, recommender systems have emerged, striving to suggest the desired and useful option from among the possible choices based on the applicant's interests, needs, and past analyses. A recommender system is a system that, based on the analysis of existing data from variables and applicants, recommends and introduces the most appropriate findings to the applicants. In this paper, using data related to the multi-year performance of several stock companies, we aim to introduce a recommender system that can recommend a suitable portfolio to investors. By a suitable portfolio, we mean one that offers the highest profit with the least risk to the investor. The basis of this work is using a method developed as an interdisciplinary activity by economists and physicists applying the laws governing complex systems, known as quantum potential. Here, we present a model using the quantum potential method, where the input is data related to company performance and stock market data, and the output is an optimal portfolio comprising suitable weights of each company's stocks.

نویسندگان

A.

Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Islamic Azad University, Zanjan, Iran

M.

Department of Information Technology Engineering, Faculty of Electrical and Computer Engineering, Islamic Azad University, Zanjan, Iran,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Wang, H., Zhao, M., Xie, X., Li, W., & Guo, ...
  • Choustova, O. (۲۰۰۴). Bohmian mechanics for financial processes. Journal of ...
  • نمایش کامل مراجع