Fully Automated Brain Tumor Segmentation in MRI Images Using a Modified Level Set Method
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 82
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-3-4_002
تاریخ نمایه سازی: 23 تیر 1404
چکیده مقاله:
Gliomas are among the most common types of brain tumors found in adults, originating from glial cells and infiltrating surrounding brain tissues. Accurate identification and segmentation of these tumors are crucial for diagnosis, treatment planning, and patient monitoring. Despite significant advancements in medical imaging and computational analysis, glioma detection remains challenging due to the high variability in tumor shape, size, and location across different patients. Conventional segmentation methods, particularly level set approaches, often require manual intervention, limiting their efficiency and reproducibility in clinical settings. In this study, we propose a fully automated glioma segmentation method based on a modified level set framework. Unlike traditional semi-automatic level set techniques, our approach eliminates the need for manual initialization, thereby improving consistency and reducing operator dependency. The proposed method enhances boundary detection and region refinement, leading to more accurate segmentation results. To evaluate the effectiveness of our approach, we conducted extensive experiments using the standard BraTS ۲۰۱۷ dataset. Performance was assessed through both quantitative and qualitative evaluation metrics, including the Dice similarity coefficient. Our method achieved an average Dice coefficient of ۷۹% for the entire tumor, demonstrating its reliability and effectiveness compared to conventional techniques. The fully automated nature of this approach offers promising potential for integration into clinical workflows, aiding radiologists and medical professionals in the early detection and precise delineation of gliomas.
کلیدواژه ها:
نویسندگان
M.
Department of Electrical and Electronics Engineering, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :