Comparing Feature Matching Methods to Identify Persian Writers
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 27
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-6-1_003
تاریخ نمایه سازی: 22 تیر 1404
چکیده مقاله:
This study explores a comprehensive set of feature matching techniques to address the challenge of writer identification in Persian handwritten scripts. Writer identification, a key task in the domain of document analysis and forensic handwriting verification, has seen increasing use of local feature descriptors due to their robustness to scale, rotation, and noise. Although the literature highlights the potential of such techniques, limited comparative research has been conducted specifically for Persian script. In this work, we implement and evaluate several well-known feature matching algorithms including SIFT, SURF, BRISK, FREAK, and Harris corner detector-based hybrids such as Harris-SURF, Harris-FREAK, and Harris-BRISK as well as combinations like BRISK-SURF, SURF-FREAK, and SURF-BRISK. The writer identification process is carried out by comparing the feature points in a query image against those in a set of reference images. The reference image that exhibits the highest number of correctly matched keypoints is identified as belonging to the same writer as the query sample. Our experimental findings reveal that among the evaluated algorithms, the SIFT and SURF methods outperform others in terms of accuracy and reliability in identifying Persian writers. Nevertheless, several hybrid approaches also produce promising results, suggesting that combining feature detectors and descriptors can offer valuable performance improvements. This study provides a foundation for future research and applications in Persian handwriting analysis and biometric authentication.
کلیدواژه ها:
نویسندگان
R.
Department of Computer Science, Ferdows Branch, Islamic Azad University Ferdows, Iran
E.
Assistant Professor, Department of Computer Engineering, Faculty of Engineering, Islamic Azad University Ferdows Branch, Iran
H. R.
Assistant Professor, Department of Computer Engineering, Faculty of Engineering, Islamic Azad University Ferdows Branch, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :