Cardiovascular Disease Diagnosis Using the Combination of Principal Component Analysis Algorithm and Regression Tree
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-6-2_006
تاریخ نمایه سازی: 22 تیر 1404
چکیده مقاله:
Cardiovascular disease stands as a prominent global cause of mortality, emphasizing the pivotal need for effective diagnostic and treatment strategies. Recognizing the significance of early detection, this study centers on employing the regression tree algorithm as a primary method. To gauge the precision of cardiovascular disease diagnosis, we scrutinized a dataset encompassing ۲۷۰ patient samples and ۱۴ distinct characteristics. The implementation approach involved a dual deployment of the Principal Component Analysis (PCA) algorithm and the regression tree algorithm. Employing PCA, we streamlined the feature set from ۱۴ to ۸, followed by the application of the regression tree algorithm to enhance detection accuracy. The decision tree classification method adopted encompasses critical facets such as feature selection, tree generation, and pruning. Implementation of these procedures was facilitated through the Weka tool, a data mining software. The collaborative utilization of PCA and the regression tree algorithm culminated in a noteworthy improvement, yielding a diagnostic accuracy increase of ۸۱.۴۸% in detecting cardiovascular disease.
کلیدواژه ها:
نویسندگان
H. R.
Ph.D. student, Department of Computer Engineering, Faculty of Technology and Engineering, Yasouj branch, Islamic Azad University, Yasouj, Iran
M.
Masters student, Department of Computer Engineering, Faculty of Technology and Engineering, Yasouj branch, Islamic Azad University, Yasouj, Iran
M.
Masters, Department of Computer Engineering, Faculty of Technology and Engineering, Yasouj branch, Islamic Azad University, Yasouj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :