Detection of Phishing Website Attacks in Electronic Banking Using a Principal Component Analysis Algorithm and Multi-Layer Perceptron Neural Network Algorithm

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 37

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TMCH-7-1_004

تاریخ نمایه سازی: 22 تیر 1404

چکیده مقاله:

Phishing, commonly known as the unauthorized acquisition of personal information from users of online platforms and clients of digital stores and financial institutions, has witnessed a notable surge in recent years. This surge has fueled the growth of a thriving criminal enterprise, particularly targeting financial service providers. Given the magnitude of this threat, we adopted a dual approach involving the application of a Principal Component Analysis (PCA) algorithm and a multi-layer perceptron neural network algorithm to identify and combat phishing attacks within the realm of electronic banking. Initially, we employed the PCA algorithm to streamline the identification process, reducing the number of features from an initial ۳۰ to a more manageable ۱۴. Following this feature reduction step, we fine-tuned the accuracy of detecting phishing website attacks using the multi-layer perceptron neural network algorithm. This algorithm, functioning as a binary classification technique, adeptly determines whether an input vector belongs to a specific class. Acting as a linear classifier, it relies on the weighted linear combination of input factors to make predictions. To further fortify our defenses, we implemented the Waka tool, an online algorithm capable of meticulously examining individual inputs. Through the strategic integration of the PCA and multi-layer perceptron neural network algorithms, we achieved a substantial enhancement in the accuracy of detecting phishing website attacks in the electronic banking domain, reaching an impressive ۹۱.۶۴%.

کلیدواژه ها:

Detection ، phishing website attacks ، Electronic banking ، dimensionality reduction algorithm ، multi-layer perceptron neural network algorithm

نویسندگان

M.

Department of Computer Science, Islamic Azad University, Yasuj Branch, Yasuj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Samad, S. R. A., Balasubaramanian, S., Al-Kaabi, A. S., Sharma, ...
  • Yun, X., Zhang, Y., Zhou, Y., Xiao, J., Wang, Y., ...
  • Raychura, V. D., & Parekh, C. D. (۲۰۲۰). A new ...
  • Raghupathi, V., & Raghupathi, W. (۲۰۲۰). The influence of education ...
  • Lin, T.-Y., Maire, M., Belongie, S. J., Hays, J., Perona, ...
  • Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S., Ramana, S., ...
  • Distler, V. (۲۰۲۳). The influence of context on response to ...
  • Seryasat, O. R., Zadeh, H. G., Ghane, M., Abooalizadeh, Z., ...
  • Sood, K., Nosouhi, M., Nguyen, D. D. N., Jiang, F., ...
  • Yu, H., Liu, Y., Zhou, G., & Peng, M. (۲۰۲۳). ...
  • نمایش کامل مراجع