Motor Imagery EEG Signal Processing Using Common Spatial Patterns (CSP) and Python-Based Artificial Intelligence
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-7-3_001
تاریخ نمایه سازی: 22 تیر 1404
چکیده مقاله:
Brain–Computer Interface (BCI) systems create a direct communication channel between the human brain and external devices, bypassing conventional neuromuscular pathways. These systems interpret brain activity typically captured via electroencephalography (EEG) to infer user intent and execute commands accordingly. In this study, we focus on the classification of motor imagery (MI) signals, a widely used paradigm in BCI applications, which involves users imagining specific limb movements without actual muscle activation. EEG data corresponding to these imagined movements were preprocessed and analyzed using the Common Spatial Patterns (CSP) algorithm, a spatial filtering method that enhances class-discriminative features by maximizing variance differences across mental tasks. Subsequently, these features were classified using machine learning techniques implemented in the Python ۳.۷ environment. The EEG datasets used for training and evaluation were obtained from PhysioNet, a widely recognized repository hosted by the Massachusetts Institute of Technology (MIT). The aim of this work is to support the development of real-time, non-invasive BCI systems, with potential applications ranging from neurorehabilitation to the control of assistive devices such as prosthetics and exoskeletons. Additionally, the results offer insight into the implementation of neural signal processing algorithms on embedded systems, paving the way for the development of brain-controlled microchips and next-generation human–machine interfaces.
کلیدواژه ها:
نویسندگان
M.
Faculty Member, Chabahar Maritime University, Faculty of Marine Engineering, Department of Marine Electronics and Telecommunications, Chabahar, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :