A density-based clustering method with calculating the Eps parameter

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 6

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-9_002

تاریخ نمایه سازی: 20 تیر 1404

چکیده مقاله:

With regard to the non-linear nature of real-life data, their clusters' shapes are non-convex and unfortunately, some clustering methods cannot identify non-convex clusters and this is a challenge. Density-based clustering methods could be a solution to this problem. Among all methods of this type, the DBSCAN algorithm can cluster data with different shapes, sizes, and densities and also identify noise points. However, owing to the use of static input parameters-the neighbourhood radius (Eps) and the minimum value for cluster formation (MinPts)- this algorithm has some problems such as the difficulty in accurately determining these parameters in high-dimensional data sets and not recognizing clusters with different densities. Accordingly, this paper presents a density clustering algorithm, which requires minimal input parameters and one of its main parameters is Eps, which is automatically calculated based on the k-nearest neighbours of points and its value is different for each cluster. To evaluate the effectiveness of the proposed algorithm, some experiments were conducted. The obtained results showed the effectiveness and efficiency of the presented algorithm regarding the correct identification of clusters with the desired shape, size, and density. In addition, the proposed algorithm was found effective in estimating the number of clusters in most of the data sets considered in this study.

نویسندگان

Mahshid Asghari Sorkhi

Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Mohsen Rabbani

Department of Applied Mathematics, Sari Branch, Islamic Azad University, Sari, Iran

Ebrahim Akbari

Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Homayun Motameni

Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. ...
  • R. Bhuyan and S. Borah, A survey of some density ...
  • A. Bryant and K. Cios, Rnn-dbscan: A density-based clustering algorithm ...
  • A.A. Bushra, D. Kim, Y. Kan, and G. Yi, Autoscan: ...
  • I. de Moura Ventorim, D. Luchi, A.L. Rodrigues, and F.M. ...
  • S. Erich, S. Jorg, E. Martin, K.H. Peter, and X. ...
  • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A ...
  • A. Fahim, An extended dbscan clustering algorithm, Int. J. Adv. ...
  • Z. Falahiazar, A.R. Bagheri, and M. Reshadi, Determining parameters of ...
  • X. Huang, T. Ma, C. Liu, and S. Liu, Grit-dbscan: ...
  • L. Hubert and P. Arabie, Comparing partitions, J. Class. ۲ ...
  • J.-Hun Kim, J.-H. Choi, Y.-H. Park, C. Kai-Sang Leung, and ...
  • O. Kulkarni and A. Burhanpurwala, A survey of advancements in ...
  • B. Ma, C. Yang, A. Li, Y. Chi, and L. ...
  • J. Qian, Y. Zhou, X. Han, and Y. Wang, Mdbscan: ...
  • J. Ravi and S. Kulkarni, Automatic generation of parameters in ...
  • M.A. Sorkhi, E. Akbari, M. Rabbani, and H. Motameni, A ...
  • A. Strehl and J. Ghosh, Cluster ensembles-A knowledge reuse framework ...
  • P.M. Vaidya, An o(n logn) algorithm for the all-nearest-neighbors problem, ...
  • Y. Wang, J. Qian, M. Hassan, X. Zhang, T. Zhang, ...
  • Z. Wang, Z. Ye, Y. Du, Y. Mao, Y. Liu, ...
  • H. Yin, A. Aryani, S. Petrie, A. Nambissan, A. Astudillo, ...
  • X. Zhang and S. Zhou, Woa-dbscan: Application of whale optimization ...
  • نمایش کامل مراجع