Reliability based planning and operation planning of thermal-wind units
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 34
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-16-9_003
تاریخ نمایه سازی: 20 تیر 1404
چکیده مقاله:
Today, the issue of planning and operation planning of thermal units (TUs) based on generation system reliability has become very important due to the restructuring process in power systems, load increment and distributed generation penetration on the demand side. This paper proposes a two-step approach to solve the aforementioned issue in the presence of wind farm renewable energy resources in the electricity market environment. In the first step, the optimal installation capacity of TUs is determined by the goal of providing annual peak load and being at the desired level of generation system risk using the loss of load probability analysis. Their economic dispatch and spinning reserve are determined in the second step. Expected energy not served is used for generation system reliability evaluation in the operation planning phase. Single contingencies of TUs are defined as system uncertainty. It is assumed that wind farm has constant capacity in the planning phase, and it generates active power (negative injection) as a function of wind speed at the installation region in the operation planning phase. Auto Recursive and Moving Average time series model is applied for wind speed estimation at different time intervals in the operation planning phase. The genetic algorithm has been used to solve this optimization problem. To validate the effectiveness of the proposed model, numerical studies and simulations are performed on the standard test generation system with ۳۲ TUs and ۱ wind farm. Finally, conceptual results have been expressed.
کلیدواژه ها:
Thermal-wind Units ، Operating Reserve ، Generation System Reliability ، Well-Being Analysis (WBA) ، Auto Recursive and Moving Average (ARMA)
نویسندگان
Farzad Arefi
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Hassan Meyar-Naimi
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Ahmad Ghaderi Shamim
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :