Designing a model for financial forecasting using the integration of neural networks, Box Jenkins and Holt Winters methodology

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 10

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-9_009

تاریخ نمایه سازی: 20 تیر 1404

چکیده مقاله:

The present study designs a model for financial forecasting by integrating neural networks. This retrospective comparative study uses the average price data of OPEC oil from ۲۰۰۳ to ۲۰۲۲ to forecast the period from June ۲۰۲۲ to May ۲۰۲۴. To this end, two time-series models (Box-Jenkins and Holt-Winters) were examined, which in the second stage were incorporated into a hybrid model based on artificial neural networks. The neural network model was developed using Matlab, and the Box-Jenkins time-series model was constructed using SPSS and Eviews software. Based on the results of the error analysis of the Box-Jenkins methodology, among the time series processes ARIMA(۵,۱,۵), ARIMA(۴,۱,۵), ARIMA(۳,۱,۵), and ARIMA(۵,۱,۳), the models demonstrated the best accuracy with MSE values of ۶۱.۸۶, ۶۳.۲۱, ۶۳.۲۹, and ۶۳.۶۲, respectively. The accuracy of the Holt-Winters method was not suitable for time-series forecasting due to the nature of the data. Therefore, the best artificial neural network was designed for combining forecasting methods. This neural network included an input layer with ۵ neurons, a hidden layer with ۵ neurons, and a single-neuron output layer. The network was trained using the Levenberg-Marquardt algorithm and employed a linear sigmoid activation function. The results indicated that the designed hybrid neural network significantly improved the accuracy of the forecasting methods and enhanced the MSE, MAPE, AIC, and BIC indices.

کلیدواژه ها:

نویسندگان

Kobra Hosseini

Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Mohammad Ali Keramati

Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Mohammad Ali Afshar Kazemi

Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Zadallah Fathi

Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • L.-H. Chen and T.-Y. Guo, Forecasting financial crises for an ...
  • C.-W.J. Chiu, H. Mumtaz and G. Pinter, Forecasting with VAR ...
  • H.B. Ghassan and H.R. AlHajhoj, Long run dynamic volatilities between ...
  • K. Hezhabr Kiani, E. Gholami, and J. Nobakht, Estimation of ...
  • R.J. Hyndman and G. Athanasopoulos, Forecasting: Principles and practice, Monash ...
  • W. Kristjanpoller and M.C. Minutolo, Forecasting volatility of oil price ...
  • Z. Li, J.M. Rose and D.A. Hensher, Forecasting automobile petrol ...
  • W.S. McCulloch and W. Pitts, A logical calculus of the ...
  • M.R. Omidi, N. Omidi, H.A. Asgari and H. Meftahi, Mathematical ...
  • H. Poursalimi and R. Shirzadi, Developments in the relations between ...
  • K. Shahbazi and S. Salimian, Oil price forecasting using meta-analysis ...
  • B. Sivaneasan, C.Y. Yu and K.P. Goh, Solar forecasting using ...
  • H. Sohrabi Vafa, F. Nouri and M. Ebadi, Energy demand ...
  • Q.-F. Tan, X.-H. Lei, X. Wang, H. Wang, X. Wen, ...
  • C. Troise, D.Matricano, E. Candelo, and M. Sorrentino, Entrepreneurship and ...
  • M.H. Vatter, OPEC’s Risk premia and volatility in oil prices, ...
  • X. Wang and M. Meng, A hybrid neural network and ...
  • R. Wongsathan and S. Chankham, Improvement on PM-۱۰ forecast by ...
  • Y. Xue, T. Teng, F. Dang, Z. Ma, S. Wang, ...
  • M.G. Yousefi, T. Mohammadi, and N. Maarrefzadeh, Forecasting the amount ...
  • W. Zhao, J. Wang, and H. Lu, Combining forecasts of ...
  • S.H. Zolnoor and S. Mateen, Optimizing Iran’s oil production path: ...
  • نمایش کامل مراجع