The application of machine learning algorithms with a fuzzy approach to investigating faults in the control system of consumable water resources

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-9_010

تاریخ نمایه سازی: 20 تیر 1404

چکیده مقاله:

Nowadays, proper management of water resources is essential due to the scarcity of freshwater resources and the high cost of wastewater treatment. To control and optimize while avoiding human mistakes, it is necessary to design and implement an intelligent automated system to minimize human intervention. On the other hand, inevitable deficiencies in system equipment require fault detection and localization methods, all of which involve time and cost. Nevertheless, these costs can be reduced by examining faults in the design phase before entering the implementation phase. This article uses a simulated sample system to demonstrate the method's effectiveness. In this way, system faults in the design phase are predicted through machine learning methods. The system's tolerance for dealing with them is evaluated using fuzzy approaches. The proposed approach consists of a process-oriented framework comprising offline and online phases.

کلیدواژه ها:

fault tolerance ، Decision Tree ، Fuzzy sets ، Water Resources Management System

نویسندگان

Majid Rahi

Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

Ali Ebrahimnejad

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Homayun Motameni

Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Barzegar, Fuzzy logic controller for traffic signal controller unit ...
  • B. Barzegar, S. Ghanbari, H. Bozorgi, and M. Rahmani, Modeling ...
  • B. Barzegar, M. Mehrabanian, and S. Bandegan, Fuzzy logic for ...
  • B. Barzegar and H. Motameni, Modeling and simulation firewall using ...
  • B. Barzegar, H. Motameni, and H. Bozorgi, Solving flexible job-shop ...
  • V.G. Costa and C.E. Pedreira, Recent advances in decision trees: ...
  • R.B. Damala, R.K. Patnaik, and A.R. Dash, A simple decision ...
  • R. David and H. Alla, Discrete, Continuous, and Hybrid Petri ...
  • E. Dubois and H. Alla, Hybrid Petri nets with a ...
  • C.-L. Fan, Data mining model for predicting the quality level ...
  • Z. Hou, C. Lee, Y. Lv, and K. Keung, Fault ...
  • J.-S. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. ...
  • J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-fuzzy and ...
  • D. Karaboga and E. Kaya, Adaptive network based fuzzy inference ...
  • M. Mafarja, T. Thaher, M.A. Al-Betar, J. Too, M.A. Awadallah, ...
  • H. Motameni, V. Mohammad, B. Shirazi, and B. Barzegar, Modeling ...
  • B. Qi, J. Liang, and J. Tong, Fault diagnosis techniques ...
  • K. Renganathan and V. Bhaskar, Modeling, analysis and performance evaluation ...
  • F.M. Shakiba, S.M. Azizi, M. Zhou, and A. Abusorrah, Application ...
  • Y. Sheng and S.M. Rovnyak, Decision tree-based methodology for high ...
  • Y.-Y. Song and L. Ying, Decision tree methods: applications for ...
  • J. Wang, Y. Gao, Y. Cao, T. Tang, and Y. ...
  • J. Zhang and S. Tong, Event-triggered fuzzy adaptive output feedback ...
  • Y. Zhao, L. Yang, B. Lehman, J.-F. de Palma, J. ...
  • نمایش کامل مراجع