Enhanced Milne-Simpson s methods for autonomous and singular differential equations
محل انتشار: فصلنامه ریاضی و علوم محاسباتی، دوره: 6، شماره: 2
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMCS-6-2_010
تاریخ نمایه سازی: 20 تیر 1404
چکیده مقاله:
Solving autonomous and singular differential equations remains a persistent challenge for traditional numerical methods due to the presence of critical points and singularities that degrade solution accuracy. This paper introduces a novel hybrid framework that uniquely integrates the classical Milne-Simpson’s method with a neural network-based refinement strategy to address these challenges. While Milne-Simpson’s method provides an efficient initial approximation, its accuracy deteriorates near singular behaviors. To overcome this, we propose a deep learning-based post-processing stage specifically designed to refine the coarse numerical solutions. Unlike previous works that either apply neural networks as standalone solvers or generic correctors, our approach explicitly tailors the neural architecture to learn correction functions that complement the structural dynamics of Milne-Simpson’s output. The neural network is trained on synthetic datasets generated to highlight the failure modes of classical methods, particularly focusing on complex autonomous and singular behavior. Experimental evaluations demonstrate that our hybrid approach significantly improves solution accuracy in problematic regions without compromising computational efficiency, thus offering a robust and scalable method for solving challenging differential equations.
کلیدواژه ها:
radial basis functions ، Autonomous Differential Equations ، Singular Differential Equations ، Deep Learning ، Root Mean Square Error
نویسندگان
Ajimot Folasade Adebisi
Department of Mathematical Sciences, Osun State University Osogbo, Nigeria.
Saheed Aremu
Department of Mathematical Sciences, Osun State University Osogbo, Nigeria.
Muideen Ogunniran
Department of Mathematical Sciences, Osun State University Osogbo, Nigeria.
Kamiludeen Tijani
Department of Mathematical Sciences, Osun State University Osogbo, Nigeria.
Adewole Ajileye
Department of Mathematical Sciences, University of Ilesa, Nigeria, adewole.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :