FATR: A Comprehensive Dataset and Evaluation Framework for Persian Text Recognition in Wild Images
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-13-2_007
تاریخ نمایه سازی: 19 تیر 1404
چکیده مقاله:
kground and Objectives: Research on right-to-left scripts, particularly Persian text recognition in wild images, is limited due to lacking a comprehensive benchmark dataset. Applying state-of-the-art (SOTA) techniques on existing Latin or multilingual datasets often results in poor recognition performance for Persian scripts. This study aims to bridge this gap by introducing a comprehensive dataset for Persian text recognition and evaluating SOTA models on it.Methods: We propose a Farsi (Persian) text recognition (FATR) dataset, which includes challenging images captured in various indoor and outdoor environments. Additionally, we introduce FATR-Synth, the largest synthetic Persian text dataset, containing over ۲۰۰,۰۰۰ cropped word images designed for pre-training scene text recognition models. We evaluate five SOTA deep learning-based scene text recognition models using standard word recognition accuracy (WRA) metrics on the proposed datasets. We compare the performance of these recent architectures qualitatively on challenging sample images of the FATR dataset.Results: Our experiments demonstrate that SOTA recognition models' performance declines significantly when tested on the FATR dataset. However, when trained on synthetic and real-world Persian text datasets, these models demonstrate improved performance on Persian scripts.Conclusion: Introducing the FATR dataset enhances the resources available for Persian text recognition, improving model performance. The proposed datasets, trained models, and code is available at https://github.com/zobeirraisi/FATDR.
کلیدواژه ها:
نویسندگان
Z. Raisi
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
V. Nazarzehi Had
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
E. Sarani
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
R. Damani
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :