Ensemble Learning Algorithm for Power Transformer Health Assessment Using Dissolved Gas Analysis
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 49
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-13-2_012
تاریخ نمایه سازی: 19 تیر 1404
چکیده مقاله:
kground and Objectives: Power transformer (PT) health assessment is crucial for ensuring the reliability of power systems. Dissolved Gas Analysis (DGA) is a widely used technique for this purpose, but traditional DGA interpretation methods have limitations. This study aims to develop a more accurate and reliable PT health assessment method using an ensemble learning approach with DGA.Methods: The proposed method utilizes ۱۱ key parameters obtained from real PT samples. In this way, synthetic data are generated using statistical simulation to enhance the model's robustness. Twelve different classifiers are initially trained and evaluated on the combined dataset. Two novel indices (a risk index and an unnecessary cost index) are introduced to assess the classifiers' performance alongside traditional metrics such as accuracy, precision, and the confusion matrix. An ensemble learning method is then constructed by selecting classifiers with the lowest risk and cost indices.Results: The ensemble learning approach demonstrated superior performance compared to individual classifiers. The learning algorithm achieved high accuracy (۹۹%, ۹۲%, and ۸۶% for three health classes), a low unnecessary cost index (۶%), and a low misclassification risk (۱۶%). This result indicates the effectiveness of the ensemble approach in accurately detecting PT health conditions.Conclusion: The proposed ensemble learning method provides a reliable and accurate assessment of PT health using DGA data. This approach effectively optimizes maintenance strategies and enhances the overall reliability of power systems by minimizing misclassification risks and unnecessary costs.
کلیدواژه ها:
نویسندگان
K. Gorgani Firouzjah
Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
J. Ghasemi
Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :